Regional Gravity Field Recovery from GRACE Using Position Optimized Radial Base Functions

  • M. WeigeltEmail author
  • M. Antoni
  • W. Keller
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 135)


Global gravity solutions are generally influenced by degenerating effects such as insufficient spatial sampling and background models among others. Local irregularities in data supply can only be overcome by splitting the solution in a global reference and a local residual part. This research aims at the creation of a framework for the derivation of a local and regional gravity field solution utilizing the so-called line-of-sight gradiometry in a GRACE-scenario connected to a set of rapidly decaying base functions. In the usual approach, the latter are centered on a regular grid and only the scale parameter is estimated. The resulting poor condition of the normal matrix is counteracted by regularization. By contrast, here the positions as well as the shape of the base functions are additionally subject to the estimation process. As a consequence, the number of base functions can be minimized. The analysis of the residual observations by local base functions enables the resolution of details in the gravity field which are not contained in the global spherical harmonic solution. The methodology is tested using simulated as well as real GRACE data.


Grace Line-of-sight gradiometry Radial base functions Non-linear optimization 



We like to thank Dr. Frank Flechtner for his helpful review and his hint that till March 2003 the data is of less quality. Also the detailed suggestions of one anonymous reviewer helped to improve this paper and are highly appreciated.


  1. Eicker, A. (2008). Gravity field refinement by radial base functions from in-situ satellite data, Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität zu Bonn.Google Scholar
  2. Han, S. and F. Simons (2008). Spatiospectral localization of global geopotenial fields from the Gravity Recovery and Climate Experiment (GRACE) reveals the coseismic gravity change owing to the 2004 Sumatra-Andaman earthquake. J. Geophy. Res., 113, B01,405, doi: 10.1029/2007JB004927.Google Scholar
  3. Han, S., C. Jekeli, and C. Shum (2004). Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J. Geophy. Res., 109, B04,403, doi: 10.1029/2003JB002501.Google Scholar
  4. Kanzow, T., F. Flechtner, A. Chave, R. Schmidt, P. Schwintzer, and U. Send (2005). Seasonal variation of ocean bottom pressure derived from Gravity Recovery and Climate Experiment GRACE: Local validation and global patterns. J. Geophy. Res., 110, C09,001.CrossRefGoogle Scholar
  5. Kaula, W. (1966). Theory of satellite geodesy. Blaisdell Publishing Company.Google Scholar
  6. Keller, W. and M. Sharifi Wather (2005), Satellite gradiometry using a satellite pair. J. Geod., 78, 544–557.CrossRefGoogle Scholar
  7. Koop, R. (1993). Global gravity field modelling using satellite gravity gradiometry, Ph.D. thesis, Technische Universiteit Delft, Delft, Netherlands.Google Scholar
  8. Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. J. Appl. Math., 11, 431–441.Google Scholar
  9. Mayer-Gürr, T. (2006). Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE, Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität zu Bonn.Google Scholar
  10. Ortega, J. and W. Rheinboldt (1970). Iterative solution of nonlinear equations in several variables. Academic Press, NY.Google Scholar
  11. Perosanz, F., R. Biancale, J. Lemoine, N. Vales, S. Loyer, and S. Bruinsma (2005). Evaluation of the CHAMP accelerometer on two years of mission. In: Reigber, C., H. Lühr, P. Schwintzer, and J. Wickert (eds), Earth Observation with CHAMP. Springer, NY, pp. 77–82.CrossRefGoogle Scholar
  12. Rummel, R., C. Reigber, and K. Ilk, (1978). The use of satellite-to-satellite tracking for gravity parameter recovery. In: Proceedings of the European Workshop on Space Oceanography, Navigation and Geodynamics (SONG).Google Scholar
  13. Schmidt, R., F. Flechtner, U. Meyer, C. Reigber, F. Barthelmes, C. Förste, R. Stubenvoll, R. König, K.-H. Neumayer, and S. Zhu (2006). Static and time-variable gravity from GRACE mission data. In: Flury, J., R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, and U. Schreiber (eds), Observation of the Earth System from Space, ISBN 3-540-29520-8. Springer, Berlin, pp. 115–129.CrossRefGoogle Scholar
  14. Schmidt, M., M. Fengler, T. Mayer-Gürr, A. Eicker, J. Kusche, L. Sánchez, and S. Han (2007). Reginonal gravity modeling in terms of spherical base functions. J. Geod., 81, 17–38, doi: 10.1007/s00190-006-0101-5.CrossRefGoogle Scholar
  15. Tapley, B., J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T. Pekker, S. Poole, and F. Wang (2005). GGM02 – An improved Earth gravity field model from GRACE. J. Geod., 79, 467–478, doi: 10.1007/s00190-005-0480-z.CrossRefGoogle Scholar
  16. Wagner, C., D. McAdoo, J. Klokočník, and J. Kostelecký (2006). Degradation of geopotential recovery from short repeat-cycle orbits: application to GRACE monthly fields. J. Geod., 80(2), 94–103.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of GeodesyUniversität of StuttgartStuttgartGermany

Personalised recommendations