Gravity vs Pseudo-Gravity: A Comparison Based on Magnetic and Gravity Gradient Measurements

  • C. JekeliEmail author
  • K. Erkan
  • O. Huang
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 135)


Pseudo-gravity is a gravity-like accel-eration implied by constant magnetization of material on the basis of Poisson’s relationship. Pseudo-gravity anomalies from magnetic surveys, or pseudo-magnetic anomalies from observed (or computed) gravitational gradients can be used to enhance geologic interpretations of subsurface structures, such as their depth determination. We review the theory and fundamental assumptions behind Poisson’s relationship. Then, using magnetic and gravity gradient measurements in the Parkfield, California, area, we demonstrate the validity of this relationship, as well as the non-validity of the assumptions in cases where the gravitational gradient and magnetic data do not correlate.


Pseudo-gravity Magnetic anomaly Gravitational gradient Poisson’s relationship 


  1. Ates, A. and P. Keary (1995). A new method for determining magnetization direction from gravity and magnetic anomalies: application to the deep structure of the Worcester Graben. J. Geol. Soc., 152, 561–566.CrossRefGoogle Scholar
  2. Baranov, V. (1957). A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies. Geophysics, 22, 359–383.CrossRefGoogle Scholar
  3. Bell Geospace (2004). Final report of acquisition and processing on Air-FTG survey in Parkfield earthquake experiment area, September 2004, Rice University, Houston, Texas.Google Scholar
  4. Briden, J.C., R.A. Clark, and J.D. Fairhead (1982). Gravity and magnetic studies in the Channel Islands. J. Geol. Soc., 139, 35–48.CrossRefGoogle Scholar
  5. Dindi, E.W. and C.J. Swain (1988). Joint three-dimensional inversion of gravity and magnetic data from Jombo Hill alkaline complex, Kenya. J. Geol. Soc., 145, 493–504.CrossRefGoogle Scholar
  6. Erkan, K. (2008). A comparative overview of geophysical methods. Report no. 488, Geodetic Science, Ohio State University, Columbus, Ohio;
  7. Fedi, M. (1989). On the quantitative interpretation of magnetic anomalies by pseudo-gravimetric integration. Terra Nova, 1, 564–572.CrossRefGoogle Scholar
  8. Gunn, P.J. (1975). Linear transformations of gravity and magnetic fields. Geophys. Prospect., 23, 300–312.CrossRefGoogle Scholar
  9. Heiskanen, W.A. and H. Moritz (1967). Physical geodesy. W. H. Freeman and Co., San Francisco.Google Scholar
  10. Klingele, E.E., I. Marson, and H.-G. Kahle (1991). Automatic interpretation of gravity gradiometric data in two dimensions: vertical gradient. Geophys. Prospect., 39, 407–434.CrossRefGoogle Scholar
  11. McPhee, D.K., R.C. Jachens, and C.M. Wentworth (2004). Crustal structure across the San Andreas Fault at the SAFOD site from potential field and geologic studies. Geophys. Res. Lett., 32, L12S03.Google Scholar
  12. Parasnis, D.S. (1986). Principles of applied geophysics. Chapman and Hall, London.CrossRefGoogle Scholar
  13. Poisson, S.D. (1826). Mémoire sur la théorie du magnétisme. Mémoires de l’Académie Royale des Sciences de l’Institut de France, 247–348.Google Scholar
  14. Telford, W.M., L.P., Geldart, and R.E. Sheriff (1990). Applied geophysics, 2nd ed. Cambridge U. Press, Cambridge, U.K.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Division of Geodesy and Geospatial ScienceSchool of Earth Sciences, The Ohio State UniversityColumbusUSA

Personalised recommendations