Comparison of Height Anomalies Determined from SLR, Absolute Gravimetry and GPS with High Frequency Borehole Data at Herstmonceux

  • G. ApplebyEmail author
  • V. Smith
  • M. Wilkinson
  • M. Ziebart
  • S. Williams
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 135)


The UK Space Geodesy Facility has operated a highly precise Satellite Laser Ranging station at Herstmonceux in southern England for over 25 years and the laser ranger is one of the ILRS core stations. It also operates two GNSS receivers contributing to IGS for over 14 years, and an Absolute Gravimeter (AG) which provides 24-h data weekly since November 2006. The facility has environmental monitoring in the form of a borehole, in close proximity to both the SLR and the gravimeter room, which provides automatic ground-water level measurements, and precise temperature, pressure and humidity devices. In this work we will investigate time series of site height variations determined by the independent techniques of SLR, AG and GPS since November 2006. The geodetic results suggest annual periodic vertical variations of amplitude about 15 mm and the absolute gravity values show systematic variations of order four microgals. We are particularly interested in the hydrological effects on the gravimeter data and will aim to use the space geodetic results to separate them from local vertical signals.


Gravimetry Gravimeter GPS Borehole Satellite laser ranging (SLR) Drop-to-drop scatter Wind speed 


  1. Appleby, G., M. Wilkinson, and V. Smith (2008). Analysis of vertical motion at herstmonceux from satellite geodesy and absolute gravity, Geophysical Research Abstracts, Vol. 10.Google Scholar
  2. Altamimi, Z., X. Collilieux, J. Legrand, B. Garayt, and C. Boucher (2007). ITRF2005: A new release of the international terrestrial reference frame base on the time series of station positions and the earth orientation parameters. J. Geophys. Res., 112, B09401, doi: 10.1029/2007JB004949.Google Scholar
  3. Appleby, G., P. Gibbs, R.A. Sherwood, and R. Wood (1999). Achieving and maintaining sub-cm accuracy for the Herstmonceux single-photon SLR facility. Laser Radar Ranging and Atmospheric Lidar Techniques II, SPIE Vol 3865, 52–63.CrossRefGoogle Scholar
  4. Dow, J.M., R.E. Neilan, and G. Gendt (2005). The international GPS service (IGS): celebrating the 10th anniversary and looking to the next decade. Adv. Space Res., 36(3), 320–326, doi: 10.1016/j.asr.2005.05.125.CrossRefGoogle Scholar
  5. Gibbs, P., G. Appleby, D. Benham, C. Potter, R. Sherwood, V. Smith, and M. Wilkinson (2007). Some early results of KiloHertz laser ranging at herstmonceux. In: Proceedings of the 15th International Laser Ranging Workshop, Canberra, Australia, pp. 250–258.Google Scholar
  6. Herring, T., R.W. King, and S.C. McClusky (2006). Global Kalman filter VLBI and GPS analysis program, version 10.3, Mass. Inst. of Technol., Cambridge.Google Scholar
  7. King, R. and Y. Bock (2004). Documentation for the GAMIT GPS analysis software, release 9.9, Mass. Inst. of Technol., Cambridge.Google Scholar
  8. McCarthy, D.D. and G. Petit (2004) IERS CONVENTIONS (2003), IERS Technical Note No. 32, IERS Convention Centre.Google Scholar
  9. Mendes, V. B. and E.C. Pavlis (2004). High-accuracy zenith delay prediciton at optical wavelengths. Geophys. Res. Lett., 31, L14602, doi:10.1029/2004GL020308.Google Scholar
  10. Niebauer, T., G. Sadagawa, J. Faller, and F. Klopping (1995). A new generation of absolute gravimeters. Metrologia, 32, 159–180.CrossRefGoogle Scholar
  11. Otsubo, T. and G. Appleby (2003). System-dependant centre of mass correction for spherical geodetic satellites. J. Geophys. Res., 108, B4, 2201, doi: 10.1029/2002JB002209.Google Scholar
  12. Pearlman, M.R., J.J. Degnan, and J.M. Bosworth (2002). The international laser ranging service. Adv. Space Res., 30(2), 135–143, July 2002, DOI:10.1016/S0273-1177(02)00277-6.CrossRefGoogle Scholar
  13. Sinclair, A. and G. Appleby (1986). SATAN – programs for the determination and analysis of satellite orbits from SLR data. SLR Tech. Note, 9, Royal Greenwich Observatory.Google Scholar
  14. Van Camp, M., T. Camelbeck, and P. Richard (2003). The FG-5 absolute gravimeter: metrology and geophysics. Physicalia Magazine. J. Belgian Phys. Soc., 25(3), 161–174.Google Scholar
  15. Van Camp, M., M. Vanclooseter, O. Cormmen, T. Petermans, K. Verbeeck, B. Meurers, T. van Dam, and A. Dassarues (2006). Hydrogeological investigations at the Membach station, Belgium and application to correct long period gravity variations. J. Geophys. Res., 111, B10403, doi:10.1029/2006JB004405.Google Scholar
  16. Zerbini, S., B. Richter, F. Rocca, T. Van Dam, and F. Matonti (2007). A combination of space and terrestrial geodetic techniques to monitor land subsidence: case study, the southeastern Po Plane, Italy. J. Geophys. Res., 112, B05401, doi:10.1029/2006JB004338.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • G. Appleby
    • 1
    Email author
  • V. Smith
    • 2
  • M. Wilkinson
    • 2
  • M. Ziebart
    • 3
  • S. Williams
    • 4
  1. 1.NERC Space Geodesy Facility, Herstmonceux CastleHailshamUK
  2. 2.NERC Space Geodesy Facility, Herstmonceux CastleHailshamUK
  3. 3.University College LondonLondonUK
  4. 4.Proudman Oceanographic LaboratoryLiverpoolUK

Personalised recommendations