Advertisement

Correcting Strapdown GPS/INS Gravimetry Estimates with GPS Attitude Data

  • B. A. AlbertsEmail author
  • B. C. Gunter
  • A. Muis
  • Q. P. Chu
  • G. Giorgi
  • L. Huisman
  • P. J. Buist
  • C. C. J. M. Tiberius
  • H. Lindenburg
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 135)

Abstract

Gravity field estimation from differential GPS (DGPS) and strapdown inertial navigation system (SINS) measurements is based on differencing the observed accelerations from both systems. To rotate the specific force accelerations from the INS to the local level frame, accurate attitude information is required. In this study, we demonstrate how uncompensated errors in the gyroscope data from the INS can be corrected using GPS attitude estimates. A simulation study is carried out to investigate how gyro errors affect the gravity estimates, as well as what the accuracy requirements are for the GPS-derived attitude data in order to estimate gyroscope biases. Results show that the GPS attitude data obtained during a flight experiment are accurate enough to correct the gyro data and reduce the effect of attitude errors on gravity estimates to less than 1 mgal.

Keywords

Airborne gravimetry Strapdown INS GPS attitude determination Gyro error estimation 

References

  1. Bruton, A.M. (2000). Improving the accuracy and resolution of SINS/DGPS airborne gravimetry. UCGE report # 20145, Calgary, Canada.Google Scholar
  2. Buist, P.J. (2007). The baseline constrained LAMBDA method for single epoch, single frequency attitude determination applications. ION GNSS 2007 Proceedings, pp. 2962-2973. Fort Worth, Texas, USA, 25–28 September 2007.Google Scholar
  3. Buist, P.J. (2008). GNSS kinematic relative positioning for spacecraft: data analysis of a dynamic testbed. 26th International symposium on space technology and science. Hamamatsu, Japan, 1–8 June 2008.Google Scholar
  4. Mulder, J.A., Q.P. Chu, J.K. Sridhar, J.H. Breeman and M. Laban (1999). Non-linear aircraft flight path reconstruction review and new advances. Prog. Aerospace Sci., 35, 673–726.CrossRefGoogle Scholar
  5. Teunissen, P.J.G (1993). Least-squares estimation of the integer GPS ambiguities. Invited lecture, section IV Theory and Methodology, IAG General Meeting, Beijing, China, 1993 (available on http://www.lr.tudelft.nl/mgp).Google Scholar
  6. Teunissen, P.J.G (2006). The LAMBDA method for GNSS COMPASS. Artif. Satellites, 41(3), 89–103.Google Scholar
  7. Schwarz, K.P. and Z. Li (1997). An introduction to airborne gravimetry and its boundary value problems. In: Sanso F. and R. Rummel (eds), Geodetic boundary value problems in view of the one centimeter geoid. Lecture notes in earth sciences. Springer, Berlin, Vol. 65, pp. 312–358.CrossRefGoogle Scholar
  8. Schwarz, K.P. and M. Wei (1994). Some unsolved problems in airborne gravimetry. In: Sünkel, and H.I. Marson (eds), Proc IAG Symposia 113, Gravity and geoid. Springer, Berlin, pp. 131–150.Google Scholar
  9. Wei, M. and K.P. Schwarz (1994). An error analysis of airborne vector gravimetry. In: Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS94), pp. 509–520.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • B. A. Alberts
    • 1
    Email author
  • B. C. Gunter
    • 2
  • A. Muis
    • 3
  • Q. P. Chu
    • 3
  • G. Giorgi
    • 1
  • L. Huisman
    • 1
  • P. J. Buist
    • 1
  • C. C. J. M. Tiberius
    • 1
  • H. Lindenburg
    • 1
  1. 1.Delft Institute of Earth Observation and Space Systems (DEOS), Delft University of TechnologyDelftThe Netherlands
  2. 2.Delft Institute of Earth Observation and Space Systems (DEOS), Delft University of TechnologyDelftThe Netherlands
  3. 3.Control and Simulation, Faculty of Aerospace Engineering, Delft University of TechnologyDelftThe Netherlands

Personalised recommendations