Advertisement

First Experience with the Transportable MPG-2 Absolute Gravimeter

  • S. SvitlovEmail author
  • C. Rothleitner
  • L.J. Wang
Conference paper
  • 2k Downloads
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 135)

Abstract

We report on design details and first results obtained with the transportable absolute gravimeter MPG-2 (“Max-Planck-Gravimeter”). It is developed as an evolution of the stationary device MPG-1, completed in 2007. The MPG-2 is built on a common scheme where the position of a freely falling object is monitored. The setup consists of a ballistic block, an interferometer and the electronics. Free fall drops can be repeated every 10 s with the standard deviation close to 30 μgal. A one-day gravity observation gives a result with a standard deviation of the mean of less than 5 μgal. A prototype of the MPG-2 took part in the ECAG-2007. New measurements at the reference gravity station “Bad Homburg”, Germany confirmed the declared combined standard uncertainty of 50 μgal.

Keywords

Absolute gravimeter Comparisons Floor recoil Uncertainty budget Repeatability Reproducibility Standard uncertainty 

References

  1. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML (1995) Guide to the expression of uncertainty in measurements, 2nd edn (Geneva: ISO).Google Scholar
  2. Charles, K. and R. Hipkin (1995). Vertical gradient and datum height corrections to absolute gravimeter data and the effect of structured fringe signals. Metrologia, 32, 193–200.CrossRefGoogle Scholar
  3. Lambert, A. and N. Courtier (1997). Toward realistic gravimeter error budgets. In: Proceedings of AGU Chapman Conference on Microgal Gravimetry: Instruments, Observations, and Applications, St. Augustine, Florida, USA, March 3–6: 8.Google Scholar
  4. Niebauer, T.M., G.S. Sasagawa, J.E. Faller, R. Hilt, and F. Klopping (1995). A new generation of absolute gravimeters. Metrologia, 32, 159–180.CrossRefGoogle Scholar
  5. OIML D11 (2004). General requirements for electronic measuring instruments: 1–56.Google Scholar
  6. Rinker, R.L.I. (1983). Super Spring – a new type of low-frequency vibration isolator. Ph.D. thesis, University of Colorado at Boulder.Google Scholar
  7. Rothleitner, C. (2008). Ultra-high precision, absolute, earth gravity measurements. Ph.D. thesis, University Erlangen-Nuremberg: 138. http://www.opus.ub.uni-erlangen.de/opus/frontdoor.php?source_opus=994&la=de
  8. Rothleitner, C., S. Svitlov, H. Mérimèche, and L.J. Wang (2007). A method for adjusting the centre of mass of a freely falling body in absolute gravimetry. Metrologia, 44, 234–241.CrossRefGoogle Scholar
  9. Steiner, R.L., D.B. Newell, E.R. Williams, R. Liu, and P. Gournay (2005). The NIST project for the electronic realization of the kilogram. IEEE Trans. Instrum. Meas., 54, 846–849.CrossRefGoogle Scholar
  10. Svetlov, S.M. (1997). An absolute gravimeter and vibration disturbances: a frequency responses method. In: Segawa, J., H. Fujimoto, and S. Okubo (eds), Proceedings of IAG Symposia ‘Gravity, Geoid and Marine Geodesy’, Vol. 117, Springer, Berlin, pp. 47–54.Google Scholar
  11. Timmen, L. (2003). Precise definition of the effective measurement height of free-fall absolute gravimeters. Metrologia, 40, 62–65.CrossRefGoogle Scholar
  12. Van Camp, M. and P. Vauterin (2005). Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput. Geosci., 31(5): 631–640.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Max Planck Institute for the Science of LightErlangenGermany

Personalised recommendations