Skip to main content

Cellular Biology of Nitrogen Metabolism and Signaling

  • Chapter
  • First Online:
Cell Biology of Metals and Nutrients

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 17))

Abstract

This chapter summarizes major aspects of N-nutrition in plants. N distribution within a plant varies widely according to the organ, the development stage, and mostly to the environmental conditions. Within the cell, the different N forms are stored in different compartments and the pool sizes are controlled in contrasting manner. Plants can take up nitrate, ammonium, urea, and other organic N forms. Various transporters for these compounds have been characterized, and the localization and properties of these proteins give rise to a complex pattern of N fluxes within the plant. The further assimilation of nitrate is well described, but the in planta role of all proteins, as for example GS1 and GDH, is far from being evident. Some are involved in N remobilization which is an important N source for example during seed filling.

Regulation of N assimilation occurs at the transcriptional and post-transcriptional levels, and regulation of the different steps is highly coordinated. However, only very few molecular players are known. As a special case in N-signaling, NO, a side product of N assimilation, is considered in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ 28:500–512

    CAS  PubMed  Google Scholar 

  • Almagro A, Lin SH, Tsay YF (2008) Chrarcterization of the Arabidopsis nitrate transporterNRT1.6 reveals a role of nitrate in early embryo development. Plant Cell 20:3289–3299

    CAS  PubMed  Google Scholar 

  • Bachmann M, Shiraishi N, Campbell WH, Yoo BC, Harmon AC, Huber SC (1996) Identification of ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell 8:505–517

    CAS  PubMed  Google Scholar 

  • Benschop JJ, Mohammed S, O’Flaherty M, Heck AJR, Slijiper M, Menke FL (2007) Quantitative phosphoproteomics of early elicitor signalling in Arabidopsis. Mol Cell Proteomics 65:1198–1214

    Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    CAS  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill JS (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    CAS  PubMed  Google Scholar 

  • Brouquisse R, Masclaux C, Feller U, Raymond P (2001) Protein hydrolysis and nitrogen remobilization in plant life. In: Lea P, Morot-Gaudry JF (eds) Plant nitrogen. Springer, Berlin, pp 275–294

    Google Scholar 

  • Camargo A, Llamas A, Scnell RA, Higuera JJ, Gonzales-Ballester D, Lefebvre PA, Fernandez E, Galvan A (2007) Nitrate signalling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 19:3491–3503

    CAS  PubMed  Google Scholar 

  • Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou JP, Daniel-Vedele F, Fernandez E, Meyer C, Krapp A (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57:426–435

    CAS  PubMed  Google Scholar 

  • Catoni E, Desimone M, Hilpert M, Wipf D, Kunzae R, Schneider A, Flugge UI, Schumacher K, Frommer WB (2003) Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis. BMC Plant Biol 3:1

    PubMed  Google Scholar 

  • Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root NO -3 uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol 127:262–271

    CAS  PubMed  Google Scholar 

  • Chen J, Wang X (1995) Existence and characteristics of nitrate reductase in plamam membrane of maize roots. Sci China Ser B Chem Life Sci Earth Sci 38:564–572

    CAS  Google Scholar 

  • Chiu C, Lin CS, Hsia AP, Su RC, Lin HL, Tsay YF (2004) Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol 45:1139–1148

    CAS  PubMed  Google Scholar 

  • Chopin F, Orsel M, Dorbe MF, Chardon F, Truong HN, Miller AJ, Krapp A, Daniel-Vedele F (2007) The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell 19:1590–1602

    CAS  PubMed  Google Scholar 

  • Couturier J, Montanini B, Martin F, Brun A, Blaudez D, Chalot M (2007) The expanded family of ammonium transporters in the perennial poplar plant. New Phytol 174:137–150

    CAS  PubMed  Google Scholar 

  • Corruzzi G M (2003) Primary N-assimilation into aminoacid in Arabidopsis. I. The Arabidopsis book, Rockville, MD: American Society of Plant Biologists. doi: 10.1199/tab.0111, http://www.aspb.org/publications/arabidopsis/

  • Courtois C, Besson A, Dahan J, Bourque S, Dobrowolska G, Pugin A, Wendehenne D (2008) Nitric oxide signaling in plants: interplays with Ca2+ and proteinkinases. J Exp Bot 59:155–164

    CAS  PubMed  Google Scholar 

  • Crawford NM, Arst HN Jr (1993) The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet 27:115–146

    CAS  PubMed  Google Scholar 

  • Daniel-Vedele F, Filleur S, Caboche M (1998) Nitrate transport: a key step in nitrate assimilation. Curr Opin Plant Biol 1:235–239

    CAS  PubMed  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–943

    PubMed  Google Scholar 

  • De Cires A, De la Torre A, Delgado B, Lara C (1993) Role of light and CO2 fixation in the control of nitrate-reductase activity in barley leaves. Planta 190:277–283

    Google Scholar 

  • Dehlon P, Gojon A, Tillard P, Passama L (1996) Diurnal regulation of NO3- uptake in soybean plants. 4. Dependence on current photosynthesis and sugar availability to the roots. J Exp Bot 47:893–900

    Google Scholar 

  • del Rio LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    PubMed  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa under hypoxic stress. Plant J 35:763–770

    CAS  PubMed  Google Scholar 

  • Douglas P, Pigaglio E, Ferrer A, Halford NG, MacKintosh C (1997) Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are regulated by reversible phosphorylation and/or Ca2+ ions. Biochem J 325:101–109

    CAS  PubMed  Google Scholar 

  • Du S, Zhang Y, Lin X, Wang Y, Tang C (2008) Regulation of nitrate reductase by nitric oxide in Chinese cabbage pakchoi (Brassica chinensis L.). Plant Cell Environ 31:195–204

    CAS  PubMed  Google Scholar 

  • Dutton AS, Fukuto JM, Houk KN (2005) Quantum mechanical determinations of reaction mechanisms, acid base, and redox properties of nitrogen oxides and their donors. In: Packer L, Cadenas E (eds) Methods in enzymology, 396th edn. Elsevier, Amsterdam, pp 26–44

    Google Scholar 

  • Eun-Yeong B, Zdebik AA, Jentsch TJ (2009) Residues important for nitrate/proton coupling in plant and mammalian CLC transporters. J Biol Chem. doi:10.1074/jbc.M901170200

    Google Scholar 

  • Feller U, Keist M (1986) Senescence and nitrogen metabolism in annual plants. In: Lambers H, Neetson JJ, Stulen I (eds) Fundamental, ecological and agricultural aspects of nitrogen metabolism. Martinus Nijhoff Publishers Dordrecht, the Netherlands, pp 219–234

    Google Scholar 

  • Ferrario-Méry S, Boutet M, Leleu O, Savino G, Hodges M, Meyer C (2005) Physiological characterization of Arabidopsis mutants affected in the expression of the putative regulatory protein PII. Planta 223:28–39

    PubMed  Google Scholar 

  • Ferrario-Méry S, Meyer C, Hodges M (2008) Chloroplast nitrite uptake is enhanced in Arabidopsis PII mutants. FEBS Lett 582:1061–1066

    PubMed  Google Scholar 

  • Filleur S, Dorbe MF, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001) An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett 489:220–224

    CAS  PubMed  Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta Biomembr 1465:219–235

    CAS  Google Scholar 

  • Fraisier V, Gojon A, Tillard P, Daniel-Vedele F (2000) Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source. Plant J 23:489–496

    CAS  PubMed  Google Scholar 

  • Gallais A, Coque M, Quilléré I, Le Gouis J, Prioul JL, Hirel B (2007) Estimating proportions of N remobilization and of post-silking N uptake allocated to maize kernels by 15N labelling. Crop Sci 47:685–691

    CAS  Google Scholar 

  • Gastal F, Saugier B (1989) Relationship between nitrogen uptake and carbon assimilation in whole plant of tall fescue. Plant Cell Environ 12:407–416

    Google Scholar 

  • Gansel X, Munos S, Tillard P, Gojon A (2001) Differential regulation of the NO3- and NH4+ trasnporter genes AtNRT2.1 and AtAMT1.1 in Arabidopsis: relation with long distance and local controls by N status of the plant. Plant J 26:143–155

    CAS  PubMed  Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    CAS  PubMed  Google Scholar 

  • Geelen D, Lurin C, Bouchez D, Frachisse JM, Lelievre F, Courtial B, Barbier-Brygoo H, Maurel C (2000) Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J 21:259–269

    CAS  PubMed  Google Scholar 

  • Geiger M, Walch-Liu P, Engels C, Harnecker J, Schulze ED, Ludewig SU, Scheible WR, Stitt M (1998) Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants, and a large stimulation of nitrate reductase activity and higher levels of amino acids in young tobacco plants. Plant Cell Environ 21:253–268

    CAS  Google Scholar 

  • Gifford LM, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105:803–808

    CAS  PubMed  Google Scholar 

  • Gordon T, Lea PJ, Rosenberg C, Trinchnat JC (2001) Nodule formation and function. In: Lea P, Morot-Gaudry JF (eds) Plant nitrogen. Springer, Berlin, pp 101–146

    Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    CAS  PubMed  Google Scholar 

  • Guo FQ, Wang R, Chen M, Crawford NM (2001) The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell 13:1761–17677

    CAS  PubMed  Google Scholar 

  • Herrera-Rodriguez MB, Maldonado JM, Perez-Vicente R (2006) Role of asparagine and asparagine synthetase genes in sunflower (Helianthus annuus) germination and natural senescence. J Plant Physiol 163:11061–11070

    Google Scholar 

  • Hirel B, Lea PJ (2001) Ammonia assimilation. In: Lea P, Morot-Gaudry JF (eds) Plant nitrogen. Springer, Berlin, pp 79–100

    Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1934

    CAS  PubMed  Google Scholar 

  • Hong JK, Yun BW, Kang J-G, Raja MU, Kwon E, Sorhagen K, Chu C, Wang Y, Loake GJ (2008) Nitric oxide function and signaling in plant disease resistance. J Exp Bot 59:147–154

    CAS  PubMed  Google Scholar 

  • Hoyos ME, Palmieri L, Wertin T, Arrigoni R, Polacco JC, Palmieri F (2003) Identification of a mitochondrial transporter for basic amino acids in Arabidopsis thaliana by functional reconstitution into liposomes and complementation in yeast. Plant J 33:1027–1035

    CAS  PubMed  Google Scholar 

  • Hu HC, Wang YY, Tsay YF (2009) AtCIPK8, a CBL-interating protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J 57:264–278

    CAS  PubMed  Google Scholar 

  • Huang NC, Chiang CS, Crawford NM, Tsay YF (1996) CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell 8:2183–2191

    CAS  PubMed  Google Scholar 

  • Huang NC, Liu KH, Lo HJ, Tsay YF (1999) Cloning and functionnal characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of a low-affiniy uptake. Plant Cell 11:1381–1392

    CAS  PubMed  Google Scholar 

  • Ikeda Y, Koizumi N, Kusano T, Sano H (2000) Specific binding of a 14–13–3 protein to autophosphorylateld WPK4, and SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase. J Biol Chem 275:31695–31700

    CAS  PubMed  Google Scholar 

  • Jensen DE, Belka GK, Du Bois GC (1998) S-nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme. Biochem J 331:659–668

    CAS  PubMed  Google Scholar 

  • Jin CW, Du ST, Zhang YS, Lin XY, Tang CX (2009) Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomata (Solanum lycocarpum). Ann Bot. DOI:10.1093/mcp087

    PubMed  Google Scholar 

  • Jonassen EM, Lea US, Lillo C (2008) HY5 and HYH are positive regulators of nitrate reductase in seedlings and rosette stage plants. Planta 227:559–564

    CAS  PubMed  Google Scholar 

  • Kaiser WM, Huber SC (1997) Correlation between apparent activation state of nitrate reductase (NR), NR hysteresis and degradation of NR protein. J Exp Bot 48:1367–1374

    CAS  Google Scholar 

  • Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52:1981–1989

    CAS  PubMed  Google Scholar 

  • Karley AJ, Leigh RA, Sanders D (2000) Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. Plant Physiol 122:835–844

    CAS  PubMed  Google Scholar 

  • Kojima S, Bohner A, von Wirèn N (2006) Molecular mechanisms of urea transport in plants. J Membr Biol 212:83–91

    CAS  PubMed  Google Scholar 

  • Kojima S, Bohner A, Gassert B, Yuan L, von Wirén N (2007) AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 52:30–40

    CAS  PubMed  Google Scholar 

  • Kone BC, Kuncewicz T, Zhang W, Yu ZY (2003) Protein interactions with nitric oxide synthases: controlling the right time, the right place and the right amount of nitric oxide. Am J Renal Physiol 285:178–190

    Google Scholar 

  • Krouk G, Tillard P, Gojon A (2006) Regulation of the high-affinity NO3 uptake system by the NRT1.1 mediated NO3 demand signalling in Arabidopsis. Plant Physiol 142:1075–1086

    CAS  PubMed  Google Scholar 

  • Lea PJ, Miflin BJ (2004) Glutamate synthase and synthesis of glutamate in plants. Plant Physiol Biochem 41:555–564

    Google Scholar 

  • Lee RB, Ratcliffe RG (1991) Observations on the subcellular distribution of the ammonium ion in maize root tissue using in-vivo 14N-nuclear magnetic resonnance spectroscopy. Planta 183:359–367

    CAS  Google Scholar 

  • Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007a) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    CAS  PubMed  Google Scholar 

  • Lee YH, Foster J, Chen J, Voll LM, Weber APM, Tegeder M (2007b) AAP1transports uncharged amino acids into roots of Arabidopsis. Plant J 50:305–319

    CAS  PubMed  Google Scholar 

  • Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. The Plant Cell 20:786–802

    CAS  PubMed  Google Scholar 

  • Leegood RC, Lea PJ, Hauser RE (1996) Use of barley mutants to study the control of photorespiratory metabolism. Biochem Soc Trans 24:757–761

    CAS  PubMed  Google Scholar 

  • Leidreiter K, Kruse A, Heineke D, Robinson DG, Heldt HW (1995) Subcellular volumes and metabolites concentrations in potato (Solanum tuberosum cv Désirée) leaves. Botanica Acta 108:403–406

    Google Scholar 

  • Lejay L, Tillard P, Lepetit M, Olive F, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two NO 3 uptake systems by N- and C-status of Arabidopsis plants. Plant J 18:509–519

    CAS  PubMed  Google Scholar 

  • Lejay L, Gansel X, Cerezo M, Tillard P, Muller C, Krapp A, von Wirén N, Daniel-Vedele F, Gojon A (2003) Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell 15:2218–2232

    CAS  PubMed  Google Scholar 

  • Lejay L, Wirth J, Pervent M, Cross JM, Tillard P, Gojon A (2008) Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. Plant Physiol 146:2036–2053

    CAS  PubMed  Google Scholar 

  • Lemaire SD, Michelet L, Zaffagnini M, Massot V, Issakidis-Bourguet E (2007) Thioredoxins in chloroplasts. Curr Genet 51:343–365

    CAS  PubMed  Google Scholar 

  • Li W, Wang Y, Okamoto M, Crawford N, Siddiqi MY, Glass ADM (2007) Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol 143:425–433

    CAS  PubMed  Google Scholar 

  • Lichter A, Häberlein I (1998) A light-dependent redox signal participates in the regulation of ammonia fixation in chloroplasts of higher plants – ferredoxin: glutamate synthase is a thioredoxin dependent enzyme. J Plant Physiol 153:83–90

    CAS  Google Scholar 

  • Lillo C (2009) Signalling cascades integrating light-enhanced nitrate metabolism. Biochem J 415:11–19

    Google Scholar 

  • Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB, Gojon A, Tsay YF (2008) Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20:2514–2528

    CAS  PubMed  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    CAS  PubMed  Google Scholar 

  • Liu KH, Huang CY, Tsay YF (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11:865–874

    CAS  PubMed  Google Scholar 

  • Liu KH, Tsay YF (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J 22:1005–1013

    CAS  PubMed  Google Scholar 

  • Liu LH, Ludewig U, Frommer WB, von Wirén N (2003a) AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell 15:790–800

    CAS  PubMed  Google Scholar 

  • Liu LH, Ludewig U, Gassert B, Frommer WB, von Wirén N (2003b) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220–1228

    CAS  PubMed  Google Scholar 

  • Loqué D, von Wirén N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55:1293–1305

    PubMed  Google Scholar 

  • Loqué D, Ludewig U, Yuan L, von Wirén N (2005) Tonoplast intrinsic proteins AtTIP2;1and AtTIP2;3 facilitate NH3 transport of ammonium in plant roots. Plant Phys 137:671–680

    Google Scholar 

  • Loqué D, Yuan L, Kojima S, Gojon A, Wirth J, Gazzarini S, Ishiyama K, Takahashi H, von Wirèn N (2006) Additive contribution of AMT1;1 and AMT1;3 to high affinity ammonium uptake across the plasma membrane of nitrogen deficient Arabidopsis roots. Plant J 48:522–534

    PubMed  Google Scholar 

  • Loqué D, Lalonde S, Looger LL, von Wiren N, Frommer WB (2007) A cytosolic trans-activation domain is essential for ammonium uptake. Nature 446:195–198

    PubMed  Google Scholar 

  • Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F (2003) Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol 131:345–358

    CAS  PubMed  Google Scholar 

  • MacKintosh C (1992) Regulation of spinach-leaf nitrate reductase by reversible phosphorylation. Biochim Biophys Acta 1137:121–126

    CAS  PubMed  Google Scholar 

  • McMichael RW Jr, Bachmann M, Huber SC (1995) Spinach leaf sucrose-phosphate synthase and nitrate reductase are phosphorylated/inactivated by multiple protein kinases in vitro. Plant Physiol 108:1077–1082

    CAS  PubMed  Google Scholar 

  • Marmagne A, Vinauger-Douard M, Monachello D, Falcon de Longevialle A, Charon C, Allot M, Rappaport F, Wollman F, Barbier-Brygoo H, Ephritikhine G (2007) Two members of the Arabidopsis CLC (Chloride Channels) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes respectively. J Exp Bot 12:3385–3393

    Google Scholar 

  • Martinoia E, Massonneau A, Frangne N (2000) Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Phsyiol 41:1175–1186

    CAS  Google Scholar 

  • Martin F, Cliquet JB, Stewart G (2001) Nitrogen acquisition and assimilation in mycorrhizal symbioses. In: Lea P, Morot-Gaudry JF (eds) Plant nitrogen. Springer, Berlin, pp 147–166

    Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier MH, Feraud M, Jouglet T, Suzuki A (2006) Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol 140:444–456

    CAS  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M (2008) Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol 10:23–36

    CAS  PubMed  Google Scholar 

  • Matsson M, Schjoerring JK (2003) Senescence-induced changes in apoplastic and bulk tissue ammonia concentrations of ryegrass leaves. New Phytol 160:489–499

    Google Scholar 

  • Matt P, Geiger M, Walch-Liu P, Engels C, Stitt M (2001) Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. Plant Cell Environ 24:1119–1137

    CAS  Google Scholar 

  • Merigout P, Gaudon V, Quilleré I, Briand X, Daniel-Vedele F (2008a) Urea use efficiency of hydroponically grown maize and wheat plants. J Plant Nutr 31:427–443

    CAS  Google Scholar 

  • Merigout P, Lelandais M, Bitton F, Renou JP, Briand X, Meyer C, Daniel-Vedele F (2008b) Physiological and transcriptomic aspects of urea utptake and assimilation in Arabidopsis plants. Plant physiol 147:1225–1238

    CAS  PubMed  Google Scholar 

  • Mesnard F, Ratcliffe RG (2005) NMR analysis of plant nitrogen metabolism. New phytol 83:163–180

    CAS  Google Scholar 

  • Meyer C, Stitt M (2001) Nitrate reduction and signalling. In: Lea P, Morot-Gaudry JF (eds) Plant nitrogen. Springer, Berlin, pp 37–59

    Google Scholar 

  • Meyer C, Stöhr C (2002) Soluble and plasma membrane-bound enzymes involved in nitrate and nitrite metabolism. In: Foyer C, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Kluwer Academic, Dordrecht, pp 49–62

    Google Scholar 

  • Miller AJ, Cookson SJ, Smith SJ, Wells DM (2001) The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J Exp Bot 52:541–549

    CAS  PubMed  Google Scholar 

  • Miller AJ, Smith SJ (2008) Cytosolic nitrate ion homeostasis: could it have a role in sensing nitrogen status? Annals Bot 101:485–489

    CAS  Google Scholar 

  • Modolo LV, Augusto O, Almeida IMG, Pinto-Maglio CAF, Oliveira HC, Seligman K, Salgado I (2006) Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Sci 171:34–40

    CAS  Google Scholar 

  • Monachello D, Allot M, Oliva S, Krapp A, Daniel-Vedele F, Barbier-Brygoo H, Ephritikine G (2009) The txo anions transporters AtCLCa and AtCLCe fulfil interconnecting but not redundant roles in nitrate assimilation pathways. New Phytol, in press

    Google Scholar 

  • Moorhead G, Douglas P, Morrice N, Scarabel M, Aitken A, MacKintosh C (1996) Phosphorylated nitrate reductase from spinach leaves is inhibited by 14–3–3 proteins and activated by fusicoccin. Curr Biol 6:1104–1113

    CAS  PubMed  Google Scholar 

  • Nazoa P, Videmar J, Tranbarger TJ, Mouline K, Damiani I, Tillard P, Glass ADM, Touraine B (2003) Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Mol Biol 52:689–703

    CAS  PubMed  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    PubMed  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure and abiotic stress. J Exp Bot 59:165–176

    CAS  PubMed  Google Scholar 

  • Neuhäuser B, Dynowski M, Mayer M, Ludewig U (2007) Regulation of NH4+ transport by essential cross talk between AMT monomers through carboxy tails. Plant Phys 143:1651–1659

    Google Scholar 

  • Ninnemann O, Jauniaux J, Frommer WB (1994) Identification of a high affinity NH +4 transporter from plants. EMBO J 13:3464–3471

    CAS  PubMed  Google Scholar 

  • Nussaume L, Vincentz M, Meyer C, Boutin JP, Caboche M (1995) Posttranscriptional regulation of nitrate reductase by light is abolished by an N-terminal deletion. Plant Cell 7:611–621

    CAS  PubMed  Google Scholar 

  • Okamoto M, Vidmar JJ, Glass ADM (2003) Regulation of NRT1 and NRT2 Gene Families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol 44:304–317

    CAS  PubMed  Google Scholar 

  • Ono F, Frommer WB, von Wirén N (2000) Coordinated diurnal regulation of low-and high-affinity nitrate transporters in tomato. Plant Biol 2:17–23

    CAS  Google Scholar 

  • Orsel M, Eulenburg K, Krapp A, Daniel-Vedele F (2004) Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration. Planta 219:714–721

    CAS  PubMed  Google Scholar 

  • Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ (2006) Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis: physiology and protein-protein interaction. Plant Physiol 142:1304–1317

    CAS  PubMed  Google Scholar 

  • Ortiz-Lopez A, Chang HC, Bush DR (2000) Amino acid transporters in plants. Biochem Biophys Acta Biomembr 1465:275–280

    CAS  Google Scholar 

  • Pageau K, Reisdorf-Cren M, Morot-Gaudry JF, Masclaux-Daubresse C (2006) The two senescence-related markers, GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicotiana tabacum L. leaves. J Exp Bot 57:547–557

    CAS  PubMed  Google Scholar 

  • Palmieri MC, Sell S, Hunag X, Scherf M, Werner T, Durner J, Lindermayr C (2008) Nitric-oxide responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot 59:177–186

    CAS  PubMed  Google Scholar 

  • Patrick JW, Offler CE (2001) Compartmentation of transport and transfer events in developing seeds. J Exp Bot 52:551–564

    CAS  PubMed  Google Scholar 

  • Pelsy F, Caboche M (1992) Molecular genetics of nitrate reductase in higher plants. In: Scandalios JG, Wright TRF (eds) Advances in genetics, Academic Press Inc, San Diego, CA, pp 1–40

    Google Scholar 

  • Planchet E, Gupta KJ, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    CAS  PubMed  Google Scholar 

  • Rajasekhar VK, Gowri G, Campbell WH (1988) Phytochrome-mediated light regulation of nitrate reductase expression in squash cotyledons. Plant Physiol 88:242–244

    CAS  PubMed  Google Scholar 

  • Remans T, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

    CAS  PubMed  Google Scholar 

  • Renné P, Dressen U, Hebbeker U, Hille D, Flugge UI, Westhoff P, Weber APM (2003) The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2. Plant J 35:316–331

    PubMed  Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

    CAS  PubMed  Google Scholar 

  • Richard-Molard C, Krapp A, Brun F, Ney B, Daniel-Vedele F, Chaillou S (2008) Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes. J Exp Bot 59:779–791

    CAS  PubMed  Google Scholar 

  • Rochat C, Boutin J-P (1991) Metabolism of phloem-borne amino acids in maternal tissues of fruit of nodulated or nitrate-fed pea plants. J Exp Bot 42:207–214

    CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production in vivo and in vitro. J Exp Bot 53:103–110

    CAS  PubMed  Google Scholar 

  • Rümer S, Kapuganti JG, Kaiser WM (2009) Plants cells oxidize hydroxylamines to NO. J Exp Bot 60:2065–2072

    PubMed  Google Scholar 

  • Rustérucci C, Espunya MC, Díaz M, Chabannes M, Martínez CM (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292

    PubMed  Google Scholar 

  • Schröppel-Maier G, Kaiser WM (1988) Ion homeostasis in chloroplasts under salinity and mineral deficiency. Plant Physiol 87:828–832

    Google Scholar 

  • Schumaker KS, Sze H (1987) Decrease of pH gradients in tnonplast vesicles by NO 3 and Cl-: evidence for H+-coupled anion transport. Plant Physiol 83:7490–7496

    Google Scholar 

  • Scheible WR, Gonzalez-Fontes A, Morcuende R, Lauerer M, Geiger M, Glaab MJ, Gojon A, Schulze ED, Stitt M (1997) Tobacco mutants with a decreased number of functional NIA genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta 203:304–319

    CAS  PubMed  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Placios-Rojas N, Schindelasch D, Thimm O, Udvardi K, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism; protein synthesis, cellular growth processes and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    CAS  PubMed  Google Scholar 

  • Sherameti I, Sopory SK, Trebicka A, Pfannschmidt T, Oelmuller R (2002) Photosynthetic electron transport determines nitrate reductase gene expression and activity in higher plants. J Biol Chem 277:46594–46600

    CAS  PubMed  Google Scholar 

  • Segonzac C, Boyer JC, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R (2007) Nitrate efflux at the root plasmam membrane: identification of an Arabidopsis excretion transporter. Plant Cell 19:3760–3777

    CAS  PubMed  Google Scholar 

  • Singh RJ, Hogg N, Joseph J, Kalyanraman B (1996) Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem 271:18596–18603

    CAS  PubMed  Google Scholar 

  • Sohlenkamp C, Shelden M, Howitt S, Udvardi M (2000) Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett 467:273–278

    CAS  PubMed  Google Scholar 

  • Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase: functionel properties and regulation. Ann Rev Plant Physiol Plant Mol Biol 41:225–253

    CAS  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, von Wirén N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1–1;3) in rice. Plant Cell Physiol 44:726–734

    CAS  PubMed  Google Scholar 

  • Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS (2009) Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229:757–765

    CAS  PubMed  Google Scholar 

  • Stacey MG, Koh S, Becker J, Stacey G (2002) AtOPT3, a member of the oligopeptide transporter family, is essential for embryo development in Arabidopsis. Plant Cell 14:2799–2811

    CAS  PubMed  Google Scholar 

  • Stamler JS, Toone EJ, Lipton SA, Sucher NJ (1997) (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18:691–696

    CAS  PubMed  Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    PubMed  Google Scholar 

  • Sugden C, Donaghy PG, Halford NG, Hardie DG (1999) Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3- methylglutaryl Coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro. Plant Physiol 120:257–274

    CAS  PubMed  Google Scholar 

  • Sugiura M, Georgescu MN, Takahashi M (2007) A nitrite transporter associated with nitrite uptake by higher plants chloroplasts. Plant Cell Physiol 48:1022–1035

    CAS  PubMed  Google Scholar 

  • Suzuki A, Knaff DB (2005) Glutamate synthase: strucutral, mechanistic and regulatory properties, and role in the amino acid metabolism. Photosynth Res 83:191–217

    CAS  PubMed  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C, Näsholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860

    CAS  PubMed  Google Scholar 

  • Svennerstam H, Ganeteg U, Näsholm T (2008) Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease. New Phytol 180:620–630

    CAS  PubMed  Google Scholar 

  • Tischner R (2000) Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ 23:1005–1024

    CAS  Google Scholar 

  • Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713

    CAS  PubMed  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 58:2290–2300

    Google Scholar 

  • van der Leij M, Smith SJ, Miller AJ (1998) Remobilisation of vacuolar stored nitrate in barley root cells. Planta 205:64–72

    Google Scholar 

  • Vanin AF, Svistunenko DA, Mikoyan VD, Serezhenkov VA, Fryers MJ, Baker NR, Coopers CE (2004) Endogenous superoxide production and the nitrite/nitrate ratio control the concentration of bioavailable free nitric oxide in leaves. J Biol Chem 279:24100–24107

    CAS  PubMed  Google Scholar 

  • Vincentz M, Moureaux T, Leydecker MT, Vaucheret H, Caboche M (1993) Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J 3:315–324

    CAS  PubMed  Google Scholar 

  • von Wirén N, Lauter FR, Ninnemann O, Gillissen B, Walch-Liu P, Engels C, Jost W, Frommer WB (2000) Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. Plant J 21:167–175

    Google Scholar 

  • Walch-Liu P, Filleur S, Gan YB, Forde BG (2005) Signaling mechanisms integrating root and shoot responses to changes in the nitrogen supply. Photosynth Res 83:239–250

    CAS  PubMed  Google Scholar 

  • Walch-Liu P, Forde BG (2008) Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-Glutamate-induced changes in root architecture. Plant J 54:820–828

    CAS  PubMed  Google Scholar 

  • Wang R, Liu D, Crawford NM (1998) The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc Natl Acad Sci USA 95:15134–15139

    CAS  PubMed  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    CAS  PubMed  Google Scholar 

  • Wang R, Tischner R, Gutiérrez RA, Hoffman M, Xing X, Chen M, Coruzzi G, Crawford NM (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol 136:2512–2522

    CAS  PubMed  Google Scholar 

  • Wang R, Xing X, Crawford N (2007) Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots. Plant Physiol 145:1735–1745

    CAS  PubMed  Google Scholar 

  • Ward MR, Grimes HD, Huffaker RC (1989) Latent nitrate reductase-activity associated with the plasma membrane of corn roots. Planta 177:470–475

    CAS  PubMed  Google Scholar 

  • Weber A, Schwacke R, Flügge UI (2005) Solute transporters of the plastid envelope membrane. Ann Rev Plant Biol 56:133–164

    Google Scholar 

  • Weiner H, Kaiser WM (1999) 14–3–3 proteins control proteolysis of nitrate reductase in spinach leaves. FEBS Lett 455:75–78

    CAS  PubMed  Google Scholar 

  • Wells DM, Miller AJ (2000) Intracellular measurements of ammonium in Chara corallina using ion-selective microelectrodes. Plant Soil 221:103–106

    CAS  Google Scholar 

  • Wilkinson J, Crawford NM (1991) Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. Plant Cell 3:461–471

    CAS  PubMed  Google Scholar 

  • Williams LE, Miller AJ (2001) Transporters responsible for the uptake and partitioning of nitrogenous solutes. Ann Rev Plant Physiol Plant Mol Biol 52:659–688

    CAS  Google Scholar 

  • Winter H, Robinson DG, Heldt HW (1993) Subcellular volumes and metabolite concentrations in barley leaves. Planta 191:180–190

    CAS  Google Scholar 

  • Winter H, Robinson DG, Heldt HW (1994) Subcellular volumes and metabolite concentrations in spinach leaves. Planta 193:530–535

    CAS  Google Scholar 

  • Wirth J, Chopin F, Santoni V, Viennois G, Tillard P, Krapp A, Lejay L, Daniel-Vedele F, Gojon A (2007) Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J Biol Chem 282:23541–23552

    CAS  PubMed  Google Scholar 

  • Wood CC, Poree F, Dreyer I, Koelher GJ, Udvardi MK (2006) Mechanisms of ammonium transport, accumulation and retention in oocytes and yeast cells expressing Arabidopsis AtAMT1;1. FEBS Lett 580:3931–3936

    CAS  PubMed  Google Scholar 

  • Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wirén N (2007) The organization of high-affinity ammonium uptake in Arabidopsis roots depend on the spatial arrangement and biochemical properties of AmMT1-type transporters. Plant Cell 19:2636–2652

    CAS  PubMed  Google Scholar 

  • Zhuo D, Okamoto M, Vidmar JJ, Glass ADM (1999) Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J 17:63–568

    Google Scholar 

  • Zifarelli G, Pusch M (2009) Conversion of the 2 Cl/1H+ antiporter CLC-5 in a NO 3 /H+ antiporter by a single point mutation. EMBO J 28:175–182

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner M. Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daniel-Vedele, F., Krapp, A., Kaiser, W.M. (2010). Cellular Biology of Nitrogen Metabolism and Signaling. In: Hell, R., Mendel, RR. (eds) Cell Biology of Metals and Nutrients. Plant Cell Monographs, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10613-2_7

Download citation

Publish with us

Policies and ethics