Cell Biology of Molybdenum

  • Florian Bittner
  • Ralf-Rainer MendelEmail author
Part of the Plant Cell Monographs book series (CELLMONO, volume 17)


The transition element molybdenum (Mo) is essential for (nearly) all biological systems as it is required by enzymes catalyzing diverse key reactions in the global carbon, sulfur,and nitrogen metabolism. The metal itself is biologically inactive unless it is complexed by a special cofactor. With the exception of bacterial nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor (Moco), which is the active compound at the catalytic site of all other Mo-enzymes. In eukaryotes, the most prominent Mo-enzymes are nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and the mitochondrial amidoxime reductase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also includes iron and copper in an indispensable way. Moco, as released after synthesis, is likely to be distributed to the apoproteins of Mo-enzymes by putative Moco-binding proteins. Xanthine dehydrogenase and aldehyde oxidase, but not sulfite oxidase and nitrate reductase, require the postranslational sulfuration of their Mo-site to become active.


Molybdenum cofactor Molybdenum uptake Sulfite oxidase Nitrate reductase Xanthine dehydrogenase Aldehyde oxidase 



Abscisic acid


Aldehyde oxidase


N-terminal domain of Cnx1


C-terminal domain of Cnx1


Cyclic pyranopterin monophosphate




Indole-3-acetic acid




Flavin adenine dinucleotide


Mitochondrial amidoxime reducing component




Molybdenum cofactor binding protein


Molybdenum cofactor




Nitrate reductase


Nitric oxide


Reactive oxygen species


Sulfite oxidase


Xanthine dehydrogenase


Xanthine oxidase



We thank the many people who worked with us over the years on molybdenum. In particular we are grateful to Dr. Robert Hänsch for critical discussions. The research was consistenly supported by the Deutsche Forschungsgemeinschaft (R.R.M., F.B.) which is gratefully acknowledged. Financial support came also from the European Union (R.R.M.) and the Fonds der Chemischen Industrie (R.R.M.).


  1. Aguilar M, Cardenas J, Fernandez E (1992) Quantitation of molybdopterin oxidation product in wild-type and molybdenum cofactor deficient mutants of Chlamydomonas reinhardtii. Biochim Biophys Acta 1160:269–274PubMedGoogle Scholar
  2. Akaba S, Seo M, Dohmae N, Takio K, Sekimoto H, Kamiya Y, Furuya N, Komano T, Koshiba T (1999) Production of homo- and hetero-dimeric isozymes from two aldehyde oxidase genes of Arabidopsis thaliana. J Biochem 126:395–401PubMedGoogle Scholar
  3. Amaya Y, Yamazaki K, Sato M, Noda K, Nishino T, Nishino T (1990) Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. J Biol Chem 265:14170–14175PubMedGoogle Scholar
  4. Ataya FS, Witte CP, Galvan A, Igeno MI, Fernandez E (2003) Mcp1 encodes the molybdenum cofactor carrier protein in Chlamydomonas reinhardtii and participates in protection, binding, and storage functions of the cofactor. J Biol Chem 278:10885–10890PubMedCrossRefGoogle Scholar
  5. Badwey JA, Robinson JM, Karnovsky MJ, Karnovsky ML (1981) Superoxide production by an unusual aldehyde oxidase in guinea pig granulocytes. Characterization and cytochemical localization. J Biol Chem 256:3479–3486PubMedGoogle Scholar
  6. Balk J, Lill R (2004) The cell’s cookbook for iron-sulfur clusters: recipes for fool’s gold? Chembiochem 5:1044–1049PubMedCrossRefGoogle Scholar
  7. Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford MJ, Guerinot ML, Salt DE (2008) Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4:e1000004CrossRefGoogle Scholar
  8. Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221PubMedCrossRefGoogle Scholar
  9. Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384PubMedCrossRefGoogle Scholar
  10. Boland MJ, Schubert KR (1982) Purine biosynthesis and catabolism in soybean root nodules: incorporation of 14C from 14CO2 into xanthine. Arch Biochem Biophys 213:486–491PubMedCrossRefGoogle Scholar
  11. Bordas J, Bray RC, Garner CD, Gutteridge S, Hasnain SS (1980) X-ray absorption spectroscopy of xanthine oxidase. The molybdenum centres of the functional and the desulpho forms. Biochem J 191:499–508PubMedGoogle Scholar
  12. Bortels H (1930) Molybdän als Katalysator bei der biologischen Stickstoffbindung. Arch Mikrobiol 1:333–342CrossRefGoogle Scholar
  13. Braaksma FJ, Feenstra WJ (1982) Isolation and characterization of nitrate reductase-deficient mutants of Arabidopsis thaliana. Theor Appl Genet 64:83–90CrossRefGoogle Scholar
  14. Brychkova G, Xia Z, Yang G, Yesbergenova Z, Zhang Z, Davydov O, Fluhr R, Sagi M (2007) Sulfite oxidase protects plants against sulfur dioxide toxicity. Plant J 50:696–709PubMedCrossRefGoogle Scholar
  15. Campbell WH, Kinghorn KR (1990) Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem Sci 15:315–319PubMedCrossRefGoogle Scholar
  16. Campbell WH (2001) Structure and function of eukaryotic NAD(P)H:nitrate reductase. Cell Mol Life Sci 58:194–204PubMedCrossRefGoogle Scholar
  17. Corpas FJ, Palma JM, Sandalio LM, Valderrama R, Barroso JB, Del Rio LA (2008) Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. J Plant Physiol 165:1319–1330PubMedCrossRefGoogle Scholar
  18. Crawford NM (1992) Study of chlorate resistant mutants of Arabidopsis: insights into nitrate assimilation and ion metabolism of plants. In: Setlow JK (ed) Genetic engineering, principles and methods, vol 14. Plenum Press, New York, pp 89–98Google Scholar
  19. Da Cruz S, Xenarios I, Langridge J, Vilbois F, Parone P, Martinou J (2003) Proteomic analysis of the mouse liver mitochondrial inner membrane. J Biol Chem 278:41566–41571PubMedCrossRefGoogle Scholar
  20. Datta DB, Triplett EW, Newcomb EH (1991) Localization of xanthine dehydrogenase in cowpea root nodules: implications for the interaction between cellular compartments during ureide biogenesis. Proc Natl Acad Sci USA 88:4700–4702PubMedCrossRefGoogle Scholar
  21. Del Rio LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jimenez A, Lopez-Huertas E, Hernandez JA (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200PubMedCrossRefGoogle Scholar
  22. Dos Santos PC, Dean DR, Hu Y, Ribbe MW (2004) Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem Rev 104:1159–1173PubMedCrossRefGoogle Scholar
  23. Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374PubMedCrossRefGoogle Scholar
  24. Eilers T, Schwarz G, Brinkmann H, Witt C, Richter T, Nieder J, Koch B, Hille R, Hansch R, Mendel RR (2001) Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism. J Biol Chem 276:46989–46994PubMedCrossRefGoogle Scholar
  25. Fernandez E, Matagne RF (1986) In vivo complementation analysis of nitrate reductase-deficient mutants in Chlamydomonas reinhardtii. Curr Genet 10:397–403PubMedCrossRefGoogle Scholar
  26. Fischer K, Barbier GG, Hecht HJ, Mendel RR, Campbell WH, Schwarz G (2005) Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site. Plant Cell 17:1167–1179PubMedCrossRefGoogle Scholar
  27. Fischer K, Llamas A, Tejada-Jimenez M, Schrader N, Kuper J, Ataya FS, Galvan A, Mendel RR, Fernandez E, Schwarz G (2006) Function and structure of the molybdenum cofactor carrier protein from Chlamydomonas reinhardtii. J Biol Chem 281:30186–30194PubMedCrossRefGoogle Scholar
  28. Gabard J, Pelsy F, Marion-Poll A, Caboche M, Saalbach I, Grafe R, Müller AJ (1988) Genetic analysis of nitrate reductase deficient mutants of Nicotiana plumbaginifolia: evidence for six complementation groups among 70 classified molybdenum cofactor deficient mutants. Mol Gen Genet 213:275–281CrossRefGoogle Scholar
  29. Garattini E, Mendel RR, Romao MJ, Wright R, Terao M (2003) Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Biochem J 372:15–32PubMedCrossRefGoogle Scholar
  30. González-Guzmán M, Abia D, Salinas J, Serrano R, Rodrigez PL (2004) Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds. Plant Physiol 135:325–333PubMedCrossRefGoogle Scholar
  31. Gruenewald S, Wahl B, Bittner F, Hungeling H, Kanzow S, Kotthaus J, Schwering U, Mendel RR, Clement B (2008) The fourth molybdenum containing enzyme mARC: cloning and involvement in the activation of N-hydroxylated prodrugs. J Med Chem 51:8173–8177PubMedCrossRefGoogle Scholar
  32. Gutzke G, Fischer B, Mendel RR, Schwarz G (2001) Thiocarboxylation of molybdopterin synthase provides evidence for the mechanism of dithiolene formation in metal-binding pterins. J Biol Chem 276:36268–36274PubMedCrossRefGoogle Scholar
  33. Hänsch R, Lang C, Riebeseel E, Lindigkeit R, Gessler A, Rennenberg H, Mendel RR (2006) Plant sulfite oxidase as novel producer of H2O2: combination of enzyme catalysis with a subsequent nonenzymatic reaction step. J Biol Chem 281:6884–6888PubMedCrossRefGoogle Scholar
  34. Hanzelmann P, Hernandez HL, Menzel C, Garcia-Serres R, Huynh BH, Johnson MK, Mendel RR, Schindelin H (2004) Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis. J Biol Chem 279:34721–34732PubMedCrossRefGoogle Scholar
  35. Hanzelmann P, Schindelin H (2004) Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. Proc Natl Acad Sci USA 101:12870–12875PubMedCrossRefGoogle Scholar
  36. Havemeyer A, Bittner F, Wollers S, Mendel R, Kunze T, Clement B (2006) Identification of the missing component in the mitochondrial benzamidoxime prodrug-converting system as a novel molybdenum enzyme. J Biol Chem 281:34796–34802PubMedCrossRefGoogle Scholar
  37. Heidenreich T, Wollers S, Mendel RR, Bittner F (2005) Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem 280:4213–4218PubMedCrossRefGoogle Scholar
  38. Hesberg C, Hansch R, Mendel RR, Bittner F (2004) Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana: differential gene expression and enzyme activities. J Biol Chem 279:13547–13554PubMedCrossRefGoogle Scholar
  39. Hille R, Nishino T (1995) Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. Faseb J 9:995–1003PubMedGoogle Scholar
  40. Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816PubMedCrossRefGoogle Scholar
  41. Hille R (2002) Molybdenum enzymes containing the pyranopterin cofactor: an overview. Met Ions Biol Syst 39:187–226PubMedGoogle Scholar
  42. Hille R (2005) Molybdenum-containing hydroxylases. Arch Biochem Biophys 433:107–116PubMedCrossRefGoogle Scholar
  43. Hoff T, Schnorr KM, Meyer C, Caboche M (1995) Isolation of two Arabidopsis cDNAs involved in early steps of molybdenum cofactor biosynthesis by functional complementation of Escherichia coli mutants. J Biol Chem 270:6100–6107PubMedCrossRefGoogle Scholar
  44. Ibdah M, Chen YT, Wilkerson CG, Pichersky E (2009) An aldehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic Acid. Plant Physiol 150:416–423PubMedCrossRefGoogle Scholar
  45. Ivanov NV, Hubalek F, Trani M, Edmondson DE (2003) Factors involved in the assembly of a functional molybdopyranopterin center in recombinant Comamonas acidovorans xanthine dehydrogenase. Eur J Biochem 270:4744–4754PubMedCrossRefGoogle Scholar
  46. Johnson JL, Hainline BE, Rajagopalan KV (1980) Characterization of the molybdenum cofactor of sulfite oxidase, xanthine, oxidase, and nitrate reductase. Identification of a pteridine as a structural component. J Biol Chem 255:1783–1786PubMedGoogle Scholar
  47. Johnson JL, Hainline BE, Rajagopalan KV, Arison BH (1984) The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivatives. J Biol Chem 259:5414–5422PubMedGoogle Scholar
  48. Johnson JL, Duran M (2001) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3163–3177Google Scholar
  49. Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52:1981–1989PubMedCrossRefGoogle Scholar
  50. Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC (1997a) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91:973–983PubMedCrossRefGoogle Scholar
  51. Kisker C, Schindelin H, Rees DC (1997b) Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267PubMedCrossRefGoogle Scholar
  52. Kispal G, Csere P, Prohl C, Lill R (1999) The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. Embo J 18:3981–3989PubMedCrossRefGoogle Scholar
  53. Kleinhofs A, Warner RL, Lawrence JM, Jeter JM, Kudrna DA (1989) Molecular genetics of nitrate reductase in barley. In: Wray JL, Kinghorn JR (eds) Molecular and genetic aspects of nitrate assimilation. Oxford University Press, Oxford, pp 197–211Google Scholar
  54. Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707PubMedCrossRefGoogle Scholar
  55. Kozmin SG, Leroy P, Pavlov YI, Schaaper RM (2008) YcbX and yiiM, two novel determinants for resistance of Escherichia coli to N-hydroxylated base analogues. Mol Microbiol 68:51–65PubMedCrossRefGoogle Scholar
  56. Kruse T, Geisler M, Lehrke M, Ringel P, Mendel RR (2009) Identification and biochemical characterization of molybdenum cofactor-binding proteins from Arabidopsis thaliana. J Biol Chem (unpublished)Google Scholar
  57. Kuper J, Palmer T, Mendel RR, Schwarz G (2000) Mutations in the molybdenum cofactor biosynthetic protein Cnx1G from Arabidopsis thaliana define functions for molybdopterin binding. Mo-insertion and molybdenum cofactor stabilization. Proc Natl Acad Sci USA 97:6475–6480PubMedCrossRefGoogle Scholar
  58. Kuper J, Llamas A, Hecht HJ, Mendel RR, Schwarz G (2004) Structure of molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature 430:806–806CrossRefGoogle Scholar
  59. Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G, Lill R, Van Montagu M (2001) A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100PubMedCrossRefGoogle Scholar
  60. Lang C, Popko J, Wirtz M, Hell R, Herschbach C, Kreuzwieser J, Rennenberg H, Mendel RR, Hänsch R (2007) Sulfite oxidase as key enzyme for protecting plants against sulfur dioxide. Plant Cell Environ 30:447–455PubMedCrossRefGoogle Scholar
  61. Leimkühler S, Klipp W (1999) Role of XDHC in Molybdenum cofactor insertion into xanthine dehydrogenase of Rhodobacter capsulatus. J Bacteriol 181:2745–2751PubMedGoogle Scholar
  62. Leimkühler S, Wuebbens MM, Rajagopalan KV (2001) Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor. J Biol Chem 276:34695–34701PubMedCrossRefGoogle Scholar
  63. Leon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JAD, Koorneef M (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10:655–661PubMedCrossRefGoogle Scholar
  64. Lewis NJ, Hurt P, Sealy-Lewis HM, Scazzocchio C (1978) The genetic control of the molybdoflavoproteins in Aspergillus nidulans. IV. A comparison between purine hydroxylase I and II. Eur J Biochem 91:311–316PubMedCrossRefGoogle Scholar
  65. Lill R, Muhlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22:457–486PubMedCrossRefGoogle Scholar
  66. Llamas A, Mendel RR, Schwarz G (2004) Synthesis of adenylated molybdopterin: an essential step for molybdenum insertion. J Biol Chem 279:55241–55246PubMedCrossRefGoogle Scholar
  67. Llamas A, Otte T, Multhaup G, Mendel RR, Schwarz G (2006) The Mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly. J Biol Chem 281:18343–18350PubMedCrossRefGoogle Scholar
  68. Magalon A, Mendel RR. Chapter, Biosynthesis and Insertion of the Molybdenum Cofactor. In: Böck A, Curtiss III R, Kaper JB, Karp PD, Neidhardt FC, Nyström T, Slauch JM, Squires CL (eds) EcoSal–Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, D.C.
  69. Massey V, Edmondson DE (1970) On the mechansim of inactivation of xanthine oxidase by cyanide. J Biol Chem 245:6595–6598PubMedGoogle Scholar
  70. Matthies A, Rajagopalan KV, Mendel RR, Leimkuhler S (2004) Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proc Natl Acad Sci USA 101:5946–5951PubMedCrossRefGoogle Scholar
  71. Matthies A, Nimtz M, Leimkuhler S (2005) Molybdenum cofactor biosynthesis in humans: identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry. Biochemistry 44:7912–7920PubMedCrossRefGoogle Scholar
  72. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414PubMedCrossRefGoogle Scholar
  73. Mendel RR (2009) Cell biology of molybdenum. BioFactors 35:429–434PubMedCrossRefGoogle Scholar
  74. Mendel RR, Müller AJ (1976) A common genetic determinant of xanthine dehydrogenase and nitrate reductase in Nicotiana tabacum. Biochem Physiol Pflanzen 170:538–541Google Scholar
  75. Mendel RR (1992) The plant molybdenum cofactor (MoCo) – its biochemical and molecular genetics. In: Gresshoff PM (ed) Plant biotechnology and development – current topics in plant molecular biology, 1st edn. CRC Press, Boca Raton, pp 11–16Google Scholar
  76. Mendel RR, Schwarz G (2002) Biosynthesis and molecular biology of the molybdenum cofactor (Moco). Met Ions Biol Syst 39:317–368PubMedGoogle Scholar
  77. Mercer JF (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7:64–69PubMedCrossRefGoogle Scholar
  78. Millar LJ, Heck IS, Sloan J, Kana’n GJ, Kinghorn JR, Unkles SE (2001) Deletion of the cnxE gene encoding the gephyrin-like protein involved in the final stages of molybdenum cofactor biosynthesis in Aspergillus nidulans. Mol Genet Genomics 266:445–453PubMedCrossRefGoogle Scholar
  79. Montalbini P (1992) Inhibition of hypersensitive response by allopurinol applied to the host in the incompatible relationship between Phaseolus vulgaris and Uromyces phaseoli. J Phytopathol 134:218–228CrossRefGoogle Scholar
  80. Montalbini P, Della Torre G (1996) Evidence of a two-fold mechanism responsible for the inhibition by allopurinol of the hypersensitive reponse induced in tobacco by tobacco necrosis virus. Phys Mol Plant Pathol 48:273–287CrossRefGoogle Scholar
  81. Montalbini P (1998) Purification and some properties of xanthine dehydrogenase from wheat leaves. Plant Sci 134:89–102CrossRefGoogle Scholar
  82. Montalbini P (2000) Xanthine dehydrogenase from leaves of leguminous plants: purification, characterization and properties of the enzyme. J Plant Phys 156:3–16Google Scholar
  83. Moorhead GB, Meek SE, Douglas P, Bridges D, Smith CS, Morrice N, MacKintosh C (2003) Purification of a plant nucleotide pyrophosphatase as a protein that interferes with nitrate reductase and glutamine synthetase assays. Eur J Biochem 270:1356–1362PubMedCrossRefGoogle Scholar
  84. Müller AJ, Mendel RR (1989) Biochemical and somatic cell genetics of nitrate reductase in Nicotiana. In: Wray JL, Kinghorn JR (eds) Molecular and genetic aspects of nitrate assimilation. Oxford University Press, Oxford, pp 166–185Google Scholar
  85. Nishino T, Nishino T (1997) The conversion from the dehydrogenase type to the oxidase type of rat liver xanthine dehydrogenase by modification of cysteine residues with fluorodinitrobenzene. J Biol Chem 272:29859–29864PubMedCrossRefGoogle Scholar
  86. Noritake T, Kawakita K, Doke N (1996) Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiol 37:113–116Google Scholar
  87. Nowak K, Luniak N, Witt C, Wustefeld Y, Wachter A, Mendel RR, Hansch R (2004) Peroxisomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation. Plant Cell Physiol 45:1889–1894PubMedCrossRefGoogle Scholar
  88. Nussaume L, Vincentz M, Meyer C, Boutin JP, Caboche M (1995) Post-transcriptional regulation of nitrate reductase by light is abolished by an N-terminal deletion. Plant Cell 7:611–621PubMedCrossRefGoogle Scholar
  89. Pateman JA, Cove DJ, Rever BM, Roberts DB (1964) A common cofactor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase. Nature 201:58–60PubMedCrossRefGoogle Scholar
  90. Pau RN, Lawson DM (2002) Transport, homeostasis, regulation, and binding of molybdate and tungstate to proteins. Met Ions Biol Syst 39:3–74Google Scholar
  91. Perez-Vicente R, Alamillo JM, Cardenas J, Pineda M (1992) Purification and substrate inactivation of xanthine dehydrogenase from Chlamydomonas reinhardtii. Biochim Biophys Acta 1117:159–166PubMedGoogle Scholar
  92. Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S (2009) Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. Plant J 59:39–51PubMedCrossRefGoogle Scholar
  93. Rajagopalan KV, Johnson JL (1992) The pterin molybdenum cofactors. J Biol Chem 267:10199–10202PubMedGoogle Scholar
  94. Rajagopalan KV (1996) Biosynthesis of the molybdenum cofactor. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. ASM Press, Washington, DC, pp 674–679Google Scholar
  95. Rees DC, Akif Tezcan F, Haynes CA, Walton MY, Andrade S, Einsle O, Howard JB (2005) Structural basis of biological nitrogen fixation. Philos Transact A Math Phys Eng Sci 363:971–984 discussion 1035-1040PubMedCrossRefGoogle Scholar
  96. Reiss J, Cohen N, Dorche C, Mandel H, Mendel RR, Stallmeyer B, Zabot MT, Dierks T (1998) Mutations in a polycistronic nuclear gene associated with molybdenum cofactor deficiency. Nat Genet 20:51–53PubMedCrossRefGoogle Scholar
  97. Reiss J, Johnson JL (2003) Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH. Hum Mutat 21:569–576PubMedCrossRefGoogle Scholar
  98. Rieder C, Eisenreich W, O’Brien J, Richter G, Götze E, Boyle P, Blanchard S, Bacher A, Simon H (1998) Rearrangement reactions in the biosynthesis of molybdopterin – an NMR study with multiply 13C/15N labelled precursors. Eur J Biochem 255:24–36PubMedCrossRefGoogle Scholar
  99. Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110PubMedCrossRefGoogle Scholar
  100. Rodriguez-Trelles F, Tarrio R, Ayala FJ (2003) Convergent neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. Proc Natl Acad Sci USA 100:13413–13417PubMedCrossRefGoogle Scholar
  101. Sagi M, Scazzocchio C, Fluhr R (2002) The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. Plant J 31:305–317PubMedCrossRefGoogle Scholar
  102. Sandalio LM, Fernandez VM, Ruperez FL, del Rio LA (1988) Superoxide free radicals are produced in glyoxysomes. Plant Physiol 127:1–4CrossRefGoogle Scholar
  103. Santamaria-Araujo JA, Fischer B, Otte T, Nimtz M, Mendel RR, Wray V, Schwarz G (2004) The tetrahydropyranopterin structure of the sulfur-free and metal-free molybdenum cofactor precursor. J Biol Chem 279:15994–15999PubMedCrossRefGoogle Scholar
  104. Sauer P, Frebortova J, Sebela M, Galuszka P, Jacobsen S, Pec P, Frebort I (2002) Xanthine dehydrogenase of pea seedlings: a member of the plant molybdenum oxidoreductase family. Plant Physiol Biochem 40:393–400CrossRefGoogle Scholar
  105. Schrader N, Kim EY, Winking J, Paulukat J, Schindelin H, Schwarz G (2004) Biochemical characterization of the high affinity binding between the glycine receptor and gephyrin. J Biol Chem 279:18733–18741PubMedCrossRefGoogle Scholar
  106. Schwarz G, Boxer DH, Mendel RR (1997a) Molybdenum cofactor biosynthesis. The plant protein Cnx1 binds molybdopterin with high affinity. J Biol Chem 272:26811–26814PubMedCrossRefGoogle Scholar
  107. Schwarz G, Boxer DH, Mendel RR (1997b) The plant protein Cnx1 binds molybdopterin and is involved in the last step of molybdenum cofactor biosynthesis. In: Pfleiderer W, Rokos H (eds) Chemistry and biology of pteridines and folates. Blackwell Science, Berlin, pp 697–702Google Scholar
  108. Schwarz G, Schulze J, Bittner F, Eilers T, Kuper J, Bollmann G, Nerlich A, Brinkmann H, Mendel RR (2000) The molybdenum cofactor biosynthetic protein Cnx1 complements molybdate-repairable mutants, transfers molybdenum to the metal binding pterin, and is associated with the cytoskeleton. Plant Cell 12:2455–2472PubMedCrossRefGoogle Scholar
  109. Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T (2000a) Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J 23:481–488PubMedCrossRefGoogle Scholar
  110. Seo M, Peeters AJ, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JA, Koornneef M, Kamiya Y, Koshiba T (2000b) The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA 97:12908–12913PubMedCrossRefGoogle Scholar
  111. Seo M, Koshiba T (2002) The complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48PubMedCrossRefGoogle Scholar
  112. Sigel A, Sigel H (2002) Molybdenum and tungsten. Their roles in biological processes. Marcel Dekker, New YorkGoogle Scholar
  113. Skipper L, Campbell WH, Mertens JA, Lowe DJ (2001) Pre-steady-state kinetic analysis of recombinant Arabidopsis NADH:nitrate reductase: rate-limiting processes in catalysis. J Biol Chem 276:26995–27002PubMedCrossRefGoogle Scholar
  114. Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–1106PubMedCrossRefGoogle Scholar
  115. Stallmeyer B, Drugeon G, Reiss J, Haenni AL, Mendel RR (1999a) Human molybdopterin synthase gene: identification of a bicistronic transcript with overlapping reading frames. Am J Hum Genet 64:698–705PubMedCrossRefGoogle Scholar
  116. Stallmeyer B, Schwarz G, Schulze J, Nerlich A, Reiss J, Kirsch J, Mendel RR (1999b) The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells. Proc Natl Acad Sci USA 96:1333–1338PubMedCrossRefGoogle Scholar
  117. Stiefel EI (2002) The biogeochemistry of molybdenum and tungsten. Met Ions Biol Syst 39:1–29PubMedGoogle Scholar
  118. Tejada-Jimenez M, Llamas A, Sanz-Luque E, Galvan A, Fernandez E (2007) A high-affinity molybdate transporter in eukaryotes. Proc Natl Acad Sci USA 104:20126–20130PubMedCrossRefGoogle Scholar
  119. Terao M, Kurosaki M, Marini M, Vanoni MA, Saltini G, Bonetto V, Bastone A, Federico C, Saccone S, Fanelli R, Salmona M, Garattini E (2001) Purification of the aldehyde oxidase homolog 1 (AOH1) protein and cloning of the AOH1 and aldehyde oxidase homolog 2 (AOH2) genes. Identification of a novel molybdo-flavoprotein gene cluster on mouse chromosome 1. J Biol Chem 276:46347–46363PubMedCrossRefGoogle Scholar
  120. Teschner J, Lachmann N, Geisler M, Selbach K, Balk J, Mendel RR, Bittner F (2009) A novel role for the mitochondrial ABC transporter ATM3 from Arabidopsis in molybdenum cofactor biosynthesis. Plant Cell (under revision)Google Scholar
  121. Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T (2007) An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci USA 104:18807–18812PubMedCrossRefGoogle Scholar
  122. Turnlund JR (2002) Molybdenum metabolism and requirements in humans. Met Ions Biol Syst 39:727–739PubMedGoogle Scholar
  123. Verslues PE, Zhu JK (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375–379PubMedCrossRefGoogle Scholar
  124. Wahl RC, Rajagopalan KV (1982) Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases. J Biol Chem 257:1354–1359PubMedGoogle Scholar
  125. Warner CK, Finnerty V (1981) Molybdenum hydroxylases in Drosophila. II Molybdenum cofactor in xanthine dehydrogenase, aldehyde oxidase and pyridoxal oxidase. Mol Gen Genet 184:92–96PubMedCrossRefGoogle Scholar
  126. Witte CP, Igeno MI, Mendel RR, Schwarz G, Fernandez E (1998) The Chlamydomonas reinhardtii MoCo carrier protein is multimeric and stabilizes molybdopterin cofactor in a molybdate charged form. FEBS Lett 431:205–209PubMedCrossRefGoogle Scholar
  127. Wollers S, Heidenreich T, Zarepour M, Zachmann D, Kraft C, Zhao Y, Mendel RR, Bittner F (2008) Binding of sulfurated molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem 283:9642–9650PubMedCrossRefGoogle Scholar
  128. Wuebbens MM, Rajagopalan KV (1993) Structural characterization of a molybdopterin precursor. J Biol Chem 268:13493–13498PubMedGoogle Scholar
  129. Wuebbens MM, Rajagopalan KV (1995) Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies. J Biol Chem 270:1082–1087PubMedCrossRefGoogle Scholar
  130. Wuebbens MM, Rajagopalan KV (2003) Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis. J Biol Chem 278:14523–14532PubMedCrossRefGoogle Scholar
  131. Xiong L, Ishitani M, Lee H, Zhu JK (2001) The arabidopsis los5/aba3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083PubMedCrossRefGoogle Scholar
  132. Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92PubMedCrossRefGoogle Scholar
  133. Yesbergenova Z, Yang G, Oron E, Soffer D, Fluhr R, Sagi M (2005) The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42:862–876PubMedCrossRefGoogle Scholar
  134. Zhang Y, Gladyshev VN (2008) Molybdoproteomes and evolution of molybdenum utilization. J Mol Biol 379:881–899PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Plant BiologyTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations