Zn – A Versatile Player in Plant Cell Biology

  • Stephan Clemens
Part of the Plant Cell Monographs book series (CELLMONO, volume 17)


During evolution, zinc was recruited for a wide range of biochemical functions in cells. About 8% of the proteins in a plant are Zn-binding. Among them are members of all six enzyme classes and myriad regulatory proteins. Zn is required in all cellular compartments. High affinity of Zn(II) to various functional groups requires a multitude of transport and chelation processes to ensure trafficking of Zn to target sites both at the cellular and the organismal level. Detailed mechanistic understanding of Zn mobilization in the soil, uptake into a plant cell, and cytosolic buffering is still limited. More is known about Zn tolerance, storage, and long-distance translocation. Molecular dissection of Zn distribution and accumulation in plants will be important also to enable breeding of higher Zn content of crops. Zn deficiency in humans is widespread and is estimated to affect more than 25% of the world’s population.


Metal Homeostasis Nicotianamine Synthases Cation Diffusion Facilitator Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adam Z, Rudella A, Van Wijk KJ (2006) Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr Opin Plant Biol 9:234–240CrossRefPubMedGoogle Scholar
  2. Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178CrossRefPubMedGoogle Scholar
  3. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218CrossRefPubMedGoogle Scholar
  4. Arrivault S, Senger T, Krämer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46:861–879CrossRefPubMedGoogle Scholar
  5. Baker AJM (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  6. Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268CrossRefPubMedGoogle Scholar
  7. Benes I, Schreiber K, Ripperger H, Kircheiss A (1983) Metal complex formation by nicotianamine, a possible phytosiderophore. Experientia 39:261–262CrossRefGoogle Scholar
  8. Berg J, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085CrossRefPubMedGoogle Scholar
  9. Bertinato J, L'Abbe MR (2004) Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload. J Nutr Biochem 15:316–322CrossRefPubMedGoogle Scholar
  10. Black RE (2003) Zinc deficiency, infectious disease and mortality in the developing world. J Nutr 133:1485S–1489SPubMedGoogle Scholar
  11. Briat J-F, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants: physiology and metabolism. Curr Opin Plant Biol 10:276–282CrossRefPubMedGoogle Scholar
  12. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702CrossRefPubMedGoogle Scholar
  13. Brune A, Urbach W, Dietz KJ (1995) Differential toxicity of heavy-metals is partly related to a loss of preferential extraplasmic compartmentation – a comparison of Cd-stress, Mo-stress, Ni-stress and Zn-stress. New Phytol 129:403–409CrossRefGoogle Scholar
  14. Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205CrossRefGoogle Scholar
  15. Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17CrossRefGoogle Scholar
  16. Callahan DL, Baker AJ, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12CrossRefPubMedGoogle Scholar
  17. Campanella JJ, Larko D, Smalley J (2003) A molecular phylogenomic analysis of the ILR1-like family of IAA amidohydrolase genes. Comp Funct Genomics 4:584–600CrossRefPubMedGoogle Scholar
  18. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719CrossRefPubMedGoogle Scholar
  19. Clemens S, Bloss T, Vess C, Neumann D, Nies D, Zur Nieden U (2002a) A transporter in the endoplasmic reticulum of Schizosaccharomyces pombe cells mediates zinc storage and differentially affects transition metal tolerance. J Biol Chem 277:18215–18221CrossRefPubMedGoogle Scholar
  20. Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333CrossRefPubMedGoogle Scholar
  21. Clemens S, Palmgren MG, Krämer U (2002b) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315CrossRefPubMedGoogle Scholar
  22. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Physiol Plant Mol Biol 53:159–182Google Scholar
  23. Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330CrossRefPubMedGoogle Scholar
  24. Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357CrossRefPubMedGoogle Scholar
  25. Curie C, Panaviene Z, Loulergue C, Dellaporta S, Briat J, Walker E (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349CrossRefPubMedGoogle Scholar
  26. Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao YS, Jiang LW, Ryan PR, Richardson AE (2007) A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant Journal 51:198–210CrossRefPubMedGoogle Scholar
  27. Desbrosses-Fonrouge AG, Voigt K, Schröder A, Arrivault S, Thomine S, Krämer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579:4165–4174CrossRefPubMedGoogle Scholar
  28. Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722CrossRefPubMedGoogle Scholar
  29. Ellis CD, Wang F, MacDiarmid CW, Clark S, Lyons T, Eide DJ (2004) Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J Cell Biol 166:325–335CrossRefPubMedGoogle Scholar
  30. Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements. The inorganic chemistry of life, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  31. Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP (2007) Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci 32:63–70CrossRefPubMedGoogle Scholar
  32. Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224CrossRefPubMedGoogle Scholar
  33. Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608CrossRefPubMedGoogle Scholar
  34. Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163CrossRefPubMedGoogle Scholar
  35. Hacisalihoglu G, Hart JJ, Wang YH, Cakmak I, Kochian LV (2003) Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiol 131:595–602CrossRefPubMedGoogle Scholar
  36. Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350CrossRefGoogle Scholar
  37. Hanikenne M, Krämer U, Demoulin V, Baurain D (2005) A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol 137:428–446CrossRefPubMedGoogle Scholar
  38. Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395CrossRefPubMedGoogle Scholar
  39. Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143:1705–1719CrossRefPubMedGoogle Scholar
  40. Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551PubMedGoogle Scholar
  41. Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158:1317–1323CrossRefGoogle Scholar
  42. Hotton SK, Callis J (2008) Regulation of cullin ring ligases. Annu Rev Plant Biol 59:467–489CrossRefPubMedGoogle Scholar
  43. Huffman D, O'Halloran T (2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70:677–701CrossRefPubMedGoogle Scholar
  44. Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339CrossRefPubMedGoogle Scholar
  45. Kirschke CP, Huang LP (2003) Znt7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J Biol Chem 278:4096–4102CrossRefPubMedGoogle Scholar
  46. Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45:1749–1758CrossRefPubMedGoogle Scholar
  47. Krämer U, Clemens S (2005) Functions and homeostasis of zinc, copper and nickel in plants. Topics Curr Genet 14:215–271Google Scholar
  48. Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272CrossRefPubMedGoogle Scholar
  49. Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051CrossRefPubMedGoogle Scholar
  50. Le Jean M, Schikora A, Mari S, Briat JF, Curie C (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J 44:769–782CrossRefPubMedGoogle Scholar
  51. Li L, Kaplan J (2001) The yeast gene MSC2, a member of the cation diffusion facilitator family, affects the cellular distribution of zinc. J Biol Chem 276:5036–5043CrossRefPubMedGoogle Scholar
  52. Lin Y-F, Liang H-M, Yang S-Y, Boch A, Clemens S, Chen C-C, Wu J-F, J-Li H, Yeh K-C (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol 182:392–404CrossRefPubMedGoogle Scholar
  53. Ling HQ, Koch G, Bäumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098–7103CrossRefPubMedGoogle Scholar
  54. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18CrossRefPubMedGoogle Scholar
  55. Marschner H (1995) Mineral nutrition of higher plants (2nd edn). Academic press AmsterdamGoogle Scholar
  56. Matthews JM, Sunde M (2002) Zinc fingers – folds for many occasions. IUBMB Life 54:351–355CrossRefPubMedGoogle Scholar
  57. Mills RF, Francini A, Ferreira da Rocha PS, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783–791CrossRefPubMedGoogle Scholar
  58. Natori Y, Nanamiya H, Akanuma G, Kosono S, Kudo T, Ochi K, Kawamura F (2007) A fail-safe system for the ribosome under zinc-limiting conditions in Bacillus subtilis. Mol Microbiol 63:294–307CrossRefPubMedGoogle Scholar
  59. O'Halloran T, Culotta V (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060CrossRefPubMedGoogle Scholar
  60. Outten CE, O'Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492CrossRefPubMedGoogle Scholar
  61. Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjorring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473CrossRefPubMedGoogle Scholar
  62. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775CrossRefPubMedGoogle Scholar
  63. Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJM, Blaudez D, Chalot M, Sanders D (2007) A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc Natl Acad Sci USA 104:8532–8537CrossRefPubMedGoogle Scholar
  64. Puig S, Andres-Colas N, Garcia-Molina A, Penarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290CrossRefPubMedGoogle Scholar
  65. Rauser WE (1999) Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31:19–48CrossRefPubMedGoogle Scholar
  66. Sarret G, Harada E, Choi YE, Isaure MP, Geoffroy N, Fakra S, Marcus MA, Birschwilks M, Clemens S, Manceau A (2006) Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds. Plant Physiol 141:1021–1034CrossRefPubMedGoogle Scholar
  67. Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse AS, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826CrossRefPubMedGoogle Scholar
  68. Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–9096CrossRefPubMedGoogle Scholar
  69. Schaaf G, Schikora A, Haberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wiren N (2005) A putative function for the Arabidopsis Fe-phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46:762–774CrossRefPubMedGoogle Scholar
  70. Simm C, Lahner B, Salt D, LeFurgey A, Ingram P, Yandell B, Eide DJ (2007) Saccharomyces cerevisiae vacuole in zinc storage and intracellular zinc distribution. Eukaryot Cell 6:1166–1177CrossRefPubMedGoogle Scholar
  71. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78CrossRefPubMedGoogle Scholar
  72. Stephan UW, Schmidke I, Stephan VW, Scholz G (1996) The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals 9:84–90CrossRefGoogle Scholar
  73. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280CrossRefPubMedGoogle Scholar
  74. Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167CrossRefPubMedGoogle Scholar
  75. Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938–948CrossRefPubMedGoogle Scholar
  76. Trampczynska A, Böttcher C, Clemens S (2006) The transition metal chelator nicotianamine is synthesized by filamentous fungi. FEBS Lett 580:3173–3178CrossRefPubMedGoogle Scholar
  77. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301CrossRefPubMedGoogle Scholar
  78. van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren V, van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147CrossRefPubMedGoogle Scholar
  79. Vatamaniuk O, Bucher E, Ward J, Rea P (2001) A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817–20820CrossRefPubMedGoogle Scholar
  80. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRefGoogle Scholar
  81. Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312CrossRefPubMedGoogle Scholar
  82. Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot M, Briat J, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1233–1243CrossRefGoogle Scholar
  83. von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114CrossRefGoogle Scholar
  84. von Wiren N, Marschner H, Römheld V (1996) Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiol 111:1119–1125Google Scholar
  85. Vreugdenhil D, Aarts MGM, Koornneef M, Nelissen H, Ernst WHO (2004) Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Environ 27:828–839CrossRefGoogle Scholar
  86. Waters BM, Chu HH, Didonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141:1446–1458CrossRefPubMedGoogle Scholar
  87. Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281CrossRefPubMedGoogle Scholar
  88. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364CrossRefPubMedGoogle Scholar
  89. Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653CrossRefPubMedGoogle Scholar
  90. Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Stephan Clemens
    • 1
  1. 1.Universität Bayreuth, Lehrstuhl PflanzenphysiologieBayreuthGermany

Personalised recommendations