Selenium Metabolism in Plants

  • Elizabeth A. H. Pilon-SmitsEmail author
  • Colin F. Quinn
Part of the Plant Cell Monographs book series (CELLMONO, volume 17)


Selenium (Se) is an essential nutrient for many organisms, but also toxic at higher levels. While certain algae require Se to make selenoproteins, no such requirement has been shown for higher plants. Still, plants readily take up and assimilate Se using sulfur (S) transporters and biochemical pathways, and can also volatilize methylated Se. Some plants can even hyperaccumulate Se to levels around 1% of plant dry weight, in the form of methyl-selenocysteine, probably as a defense mechanism. Plants may be used both to provide dietary Se in areas of Se deficiency, and to clean up Se pollution from seleniferous areas. These applications benefit from better insight into the genetic and biochemical mechanisms that control plant Se tolerance and accumulation. Here we give a review of plant Se metabolism, and present new insights into plant Se tolerance and hyperaccumulation mechanisms. Moreover, we summarize research on the ecological aspects of plant Se accumulation.


Diamondback Moth Double Transgenics Seleniferous Soil Selenate Reduction Selenocysteine Lyase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The writing of this manuscript was supported by National Science Foundation grant # IOS-0817748 to EAHPS. We thank Wiebke Tapken for creative design of figures. We thank all researchers who contributed to the results described here and apologize to those whose work we could not cover due to space limitation.


  1. Anderson JW (1993) Selenium interactions in sulfur metabolism. In: De Kok LJ (ed) Sulfur nutrition and assimilation in higher plants – regulatory, agricultural and environmental aspects. SPB Academic, The Netherland, pp 49–60Google Scholar
  2. Bañuelos GS, Meek DW (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19:772–777CrossRefGoogle Scholar
  3. Bañuelos G, Terry N, LeDuc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium contaminated sediment. Environ Sci Technol 39:1771–1777CrossRefPubMedGoogle Scholar
  4. Bañuelos G, LeDuc DL, Pilon-Smits EAH, Tagmount A, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase, selenocysteine methyltransferase, or methionine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605CrossRefPubMedGoogle Scholar
  5. Beath OA, Gilbert CS, Eppson HF (1939a) The use of indicator plants in locating seleniferous areas in Western United States. I. General. Am J Bot 26:257–269CrossRefGoogle Scholar
  6. Beath OA, Gilbert CS, Eppson HF (1939b) The use of indicator plants in locating seleniferous areas in Western United States. II. Correlation studies by states. Amer J Bot 26:296–315CrossRefGoogle Scholar
  7. Boyd RS, Martens SN (1993) The raison d’etre for metal hyperaccumulation by plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, UK, 279–289Google Scholar
  8. Broyer TC, Huston RP, Johnson CM (1972) Selenium and nutrition of Astragalus. 1. Effects of selenite or selenate supply on growth and selenium content. Plant Soil 36:635–649CrossRefGoogle Scholar
  9. Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367CrossRefGoogle Scholar
  10. de Souza MP, Terry N (1997) Selenium volatilization by rhizosphere bacteria. Abstr Gen Meet Am Soc Microbiol 97:499Google Scholar
  11. de Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai JC, Honma TSU, Yeh L, Terry N (1998) Rate-limiting steps in selenium volatilization by Brassica juncea. Plant Physiol 117:1487–1494CrossRefPubMedGoogle Scholar
  12. de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–574CrossRefPubMedGoogle Scholar
  13. Djanaguiraman M, Durga Devi D, Shanker AK, Sheeba JA, Bangarusamy U (2005) Selenium – an antioxidative protectant in soybean during selenscence. Plant Soil 272:77–86CrossRefGoogle Scholar
  14. Diwadkar-Navsariwala V, Prins GS, Swanson SM, Birch LA, Ray VH, Hedayat S, Lantvit DL, Diamond AM (2006) Selenoprotein deficiency accelerates prostate carcinogenesis in a transgenic model. Proc Natl Acad Sci USA 103:8179–8184CrossRefPubMedGoogle Scholar
  15. Draize JH, Beath OA (1935) Observation on the pathology of “blind staggers” and “alkali disease”. Am Vet Med Assoc J 86:53–763Google Scholar
  16. Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–11CrossRefPubMedGoogle Scholar
  17. Feist LJ, Parker DR (2001) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol 149:61–69CrossRefGoogle Scholar
  18. Freeman JL, Quinn CF, Marcus MA, Fakra S, Pilon-Smits EAH (2006a) Selenium tolerant diamondback moth disarms hyperaccumulator plant defense. Current Biol 16:2181–2192CrossRefGoogle Scholar
  19. Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006b) Spatial imaging, speciation and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134CrossRefPubMedGoogle Scholar
  20. Freeman JL, Lindblom SD, Quinn CF, Fakra S, Marcus MA, Pilon-Smits EAH (2007) Selenium accumulation protects plants from herbivory by orthoptera due to toxicity and deterrence. New Phytol 175:490–500CrossRefPubMedGoogle Scholar
  21. Fu L-H, Wang X-F, Eyal Y, She Y-M, Donald LJ, Standing KG, Ben-Hayyim G (2002) A selenoprotein in the plant kingdom: Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase. J. Biol Chem 277:25983–25991CrossRefPubMedGoogle Scholar
  22. Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related non-accumulators. New Phytol 173:517–525CrossRefPubMedGoogle Scholar
  23. Galeas ML, Klamper EM, Bennett LE, Freeman JL, Kondratieff BC, Pilon-Smits EAH (2008) Selenium hyperaccumulation affects plant arthropod load in the field. New Phytol 177:715–724CrossRefPubMedGoogle Scholar
  24. Garifullina GF, Owen JD, Lindblom S-D, Tufan H, Pilon M, Pilon-Smits EAH (2003) Expression of a mouse selenocysteine lyase in Brassica juncea chloroplasts affects selenium tolerance and accumulation. Physiol Plant 118:538–544CrossRefGoogle Scholar
  25. Hansen D, Duda PJ, Zayed A, Terry N (1998) Selenium removal by constructed wetlands: role of biological volatilization. Environ Sci Technol 32:591–597CrossRefGoogle Scholar
  26. Hanson BR, Garifullina GF, Lindblom SD, Wangeline A, Ackley A, Kramer K, Norton AP, Lawrence CB, Pilon-Smits EAH (2003) Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol 159:461–469CrossRefGoogle Scholar
  27. Hanson BR, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662CrossRefGoogle Scholar
  28. Harris T (1991) Death in the Marsh. Island Press, Washington, DCGoogle Scholar
  29. Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318CrossRefPubMedGoogle Scholar
  30. Hawkesford MJ (2003) Transporter gene families in plants: the sulphate transporter gene family – redundancy or specialization? Physiol Plant 117:155–163CrossRefGoogle Scholar
  31. Kabata-Pendias A (1998) Geochemistry of selenium. J Environ Pathol Toxicol Oncol 17:173–177PubMedGoogle Scholar
  32. Kubachka KM, Meija J, LeDuc DL, Terry N, Caruso JA (2007) Environ Sci Technol 41:1863–1869CrossRefPubMedGoogle Scholar
  33. LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang C-Y, Tagmount A, deSouza MP, Neuhierl B, Bock A, Caruso JA, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383CrossRefPubMedGoogle Scholar
  34. LeDuc DL, AbdelSamie M, Montes-Bayón M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76CrossRefPubMedGoogle Scholar
  35. Leustek T (1996) Molecular genetics of sulfate assimilation in plants. Physiol Plant 97:411–419CrossRefGoogle Scholar
  36. Lewis BG, Johnson CM, Delwiche CC (1966) Release of volatile selenium compounds by plants: collection procedures and preliminary observations. J Agric Food Chem 14:638–640CrossRefGoogle Scholar
  37. Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol 138:409–420CrossRefPubMedGoogle Scholar
  38. Lyons GH, Genc Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant Soil 318:73–80CrossRefGoogle Scholar
  39. Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004) A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J 38:779–789CrossRefPubMedGoogle Scholar
  40. Mihara H, Esaki N (2002) Bacterial cysteine desulfurases: their function and mechanisms. Appl Microbiol Biotechnol 60:12–23CrossRefPubMedGoogle Scholar
  41. Munier-Lamy C, Deneux-Mustin S, Mustin C, Merlet D, Berthelin J, Leyval C (2007) Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. J Environ Radioact 97:148–158CrossRefPubMedGoogle Scholar
  42. Neuhierl B, Böck A (1996) On the mechanism of selenium tolerance in selenium accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisulcatus. Eur J Biochem 239:235–238CrossRefPubMedGoogle Scholar
  43. Neuhierl B, Thanbichler M, Lottspeich F, Böck A (1999) A family of S-methylmethionine dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. J Biol Chem 274:5407–5414CrossRefPubMedGoogle Scholar
  44. Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN (2002) Selenoproteins and selenocysteine insertion system in the model plant system, Chlamydomonas reinhardtii. EMBO J 21:3681–3693CrossRefPubMedGoogle Scholar
  45. Ohlendorf HM, Hoffman DJ, Salki MK, Aldrich TW (1986) Embryonic mortality and abnormalities of aquatic birds: apparent impacts of selenium from irrigation drain water. Sci Total Environ 52:49–63CrossRefGoogle Scholar
  46. Pankiewicz U, Jamroz J, Schodziñski A (2006) Optimization of selenium accumulation in Rhodotorula rubra cells by treatment of culturing medium with pulse electric field. Int Agrophysics 20:147–152Google Scholar
  47. Persans MW, Salt DE (2000) Possible molecular mechanisms involved in nickel, zinc and selenium hyperaccumulation in plants. Biotechnol Genet Eng Rev 17:389–413PubMedGoogle Scholar
  48. Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis thaliana expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257CrossRefPubMedGoogle Scholar
  49. Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132CrossRefPubMedGoogle Scholar
  50. Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol, in pressGoogle Scholar
  51. Quinn CF, Freeman JF, Galeas ML, Klamper EM, Pilon-Smits EAH (2008) Selenium protects plants from prairie dog herbivory – implications for the functional significance and evolution of Se hyperaccumulation. Oecologia 155:267–275CrossRefPubMedGoogle Scholar
  52. Rosenfeld I, Beath OA (1964) Selenium, geobotany, biochemistry, toxicity, and nutrition. Academic, New YorkGoogle Scholar
  53. Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA 92:9373–9377CrossRefPubMedGoogle Scholar
  54. Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389CrossRefPubMedGoogle Scholar
  55. Stadtman TC (1990) Selenium biochemistry. Annu Rev Biochem 59:111–127CrossRefPubMedGoogle Scholar
  56. Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100CrossRefPubMedGoogle Scholar
  57. Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis thaliana. Plant Physiol 146:1219–1230CrossRefPubMedGoogle Scholar
  58. Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Ann Rev Plant Physiol Plant Mol Biol 51:401–432CrossRefGoogle Scholar
  59. Thompson-Eagle ET, Frankenberger WT Jr, Karlson U (1989) Volatilization of selenium by Alternaria alternata. Appl Environ Microbiol 55:1406–1413PubMedGoogle Scholar
  60. Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S, Ishiyama K, Inoue E, Pilon M, Takahashi H, Pilon-Smits EAH (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol 139:1518–1528CrossRefPubMedGoogle Scholar
  61. Van Hoewyk D, Abdel-Ghany SE, Cohu C, Herbert S, Kugrens P, Pilon M, Pilon-Smits EAH (2007) The Arabidopsis cysteine desulfurase CpNifS is essential for maturation of iron-sulfur cluster proteins, photosynthesis, and chloroplast development. Proc Natl Acad Sci USA 104:5686–5691CrossRefPubMedGoogle Scholar
  62. Van Hoewyk D, Takahashi H, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptomeand biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253PubMedGoogle Scholar
  63. Van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EAH (2003) Overexpression of cystathionine-synthase in indian mustard enhances selenium volatilization. Planta 218:71–78CrossRefPubMedGoogle Scholar
  64. Van Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the Selenium phytoremediationpotential of transgenic Brassica juncea overexpressing ATP sulfurylase or cystathionine γ-synthase. Int J Phytoremed 6:111–118CrossRefGoogle Scholar
  65. Unni E, Koul D, Alfred Yung W-K, Sinha R (2005) Se-methylselenocysteine inhibits phosphatidylinositol 3-kinase activity of mouse mammary epithelial tumor cells in vitro. Breast Cancer Res 7:R699–R707CrossRefPubMedGoogle Scholar
  66. Whanger PD (1989) China, a country with both selenium deficiency and toxicity: some thoughts and impressions. J Nutr 119:1236–1239PubMedGoogle Scholar
  67. White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Ann Bot 100:111–118CrossRefPubMedGoogle Scholar
  68. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84CrossRefPubMedGoogle Scholar
  69. Wilber CG (1980) Toxicology of selenium: a review. Clin Toxicol 17:171–230CrossRefPubMedGoogle Scholar
  70. Wilson LG, Bandurski RS (1958) Enzymatic reactions involving sulfate, sulfite, selenate and molybdate. J Biol Chem 233:975–981PubMedGoogle Scholar
  71. Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465–473CrossRefPubMedGoogle Scholar
  72. Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511–1517CrossRefPubMedGoogle Scholar
  73. Zayed AM, Terry N (1994) Selenium volatilization in roots and shoots: effects of shoot removal and sulfate level. J Plant Physiol 143:8–14Google Scholar
  74. Zhang L, Byrne PF, Pilon-Smits EAH (2006a) Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. New Phytol 170:33–42CrossRefPubMedGoogle Scholar
  75. Zhang L-H, Ackley AR, Pilon-Smits EAH (2006b) Variation in selenium tolerance and accumulation among nineteen Arabidopsis ecotypes. J Plant Physiol 164:327–336CrossRefPubMedGoogle Scholar
  76. Zhang L-H, Abdel-Ghany SE, Freeman JL, Ackley AR, Schiavon M, Pilon-Smits EAH (2006c) Investigation of Selenium tolerance mechanisms in Arabidopsis thaliana. Physiol Plant 128:212–223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Elizabeth A. H. Pilon-Smits
    • 1
    Email author
  • Colin F. Quinn
    • 1
  1. 1.Biology DepartmentColorado State UniversityFort CollinsUSA

Personalised recommendations