Skip to main content

Strand Algebras for DNA Computing

  • Conference paper
Book cover DNA Computing and Molecular Programming (DNA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5877))

Included in the following conference series:

Abstract

We present a process algebra for DNA computing, discussing compilation of other formal systems into the algebra, and compilation of the algebra into DNA structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and Autonomous Computing Machine made of Biomolecules. Nature 414(22) (November 2001)

    Google Scholar 

  2. Berry, G., Boudol, G.: The Chemical Abstract Machine. In: Proc. 17th POPL, pp. 81–94. ACM, New York (1989)

    Google Scholar 

  3. Cardelli, L.: Artificial Biochemistry. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses. Springer, Heidelberg (2009)

    Google Scholar 

  4. Cardelli, L.: On Process Rate Semantics. Theoretical Computer Science 391(3), 190–215 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cardelli, L., Qian, L., Soloveichik, D., Winfree, E.: Personal communications

    Google Scholar 

  6. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fournet, C., Gonthier, G.: The Join Calculus: a Language for Distributed Mobile Programming. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, p. 268. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Hagiya, M.: Towards Molecular Programming. In: Ciobanu, G., Rozenberg, G. (eds.) Modelling in Molecular Biology. Springer, Heidelberg (2004)

    Google Scholar 

  9. Kari, L., Konstantinidis, S., Sosík, P.: On Properties of Bond-free DNA Languages. Theoretical Computer Science 334(1-3), 131–159 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Marathe, A., Condon, A.E., Corn, R.M.: On Combinatorial DNA Word Design. J. Comp. Biology 8(3), 201–219 (2001)

    Article  Google Scholar 

  11. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  12. Qian, L., Winfree, E.: A Simple DNA Gate Motif for Synthesizing Large-scale Circuits. In: Proc. 14th International Meeting on DNA Computing (2008)

    Google Scholar 

  13. Reisig, W.: Petri Nets: An Introduction. Springer, Heidelberg (1985)

    MATH  Google Scholar 

  14. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325(1), 141–167 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Sugiyama, H., Hagiya, M.: State Transitions by Molecules. Biosystems 52, 81–91 (1999)

    Article  Google Scholar 

  16. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-Free Nucleic Acid Logic Circuits. Science 314(8) (2006)

    Google Scholar 

  17. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a Universal Substrate for Chemical Kinetics. DNA14

    Google Scholar 

  18. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming Biomolecular Self-assembly Pathways. Nature 451, 318–322 (2008)

    Article  Google Scholar 

  19. Yurke, B., Mills Jr., A.P.: Using DNA to Power Nanostructures. Genetic Programming and Evolvable Machines archive 4(2), 111–122 (2003)

    Article  Google Scholar 

  20. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering Entropy-driven Reactions and Networks Catalyzed by DNA. Science 318, 1121–1125 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardelli, L. (2009). Strand Algebras for DNA Computing. In: Deaton, R., Suyama, A. (eds) DNA Computing and Molecular Programming. DNA 2009. Lecture Notes in Computer Science, vol 5877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10604-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10604-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10603-3

  • Online ISBN: 978-3-642-10604-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics