Skip to main content

Introduction to Quantum Plasmas

  • Chapter
  • First Online:
Introduction to Complex Plasmas

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 59))

Abstract

Plasmas are generally associated with a hot gas of charged particles which behave classically. However, when the temperature is lowered and/or the density is increased sufficiently, the plasma particles (most importantly, electrons) become quantum degenerate, that is, the extension of their wave functions becomes comparable to the distance between neighboring particles. This is the case in many astrophysical plasmas, such as those occurring in the interior of giant planets or dwarf and neutron stars, but also in various modern laboratory setups where charged particles are compressed by very intense ion or laser beams to multi-megabar pressures. Furthermore, quantum plasmas exist in solids – examples are the electron gas in metals and the electron–hole plasma in semiconductors. Finally, the exotic state of the Universe immediately after the Big Bang is believed to have been a quantum plasma consisting of electrons, quarks, photons, and gluons. In all these situations, a description in terms of classical mechanics, thermodynamics, or classical kinetic theory fails. In this chapter, an overview of quantum plasma features and their occurrence is given. The conditions for the relevance of quantum effects are formulated and discussed. The key concepts for a theoretical description of quantum plasmas are developed and illustrated by simple examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.D. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems (Akademie, Berlin, 1986)

    Google Scholar 

  2. D. Kremp, M. Schlanges, W.D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005)

    Google Scholar 

  3. M. Bonitz, Quantum Kinetic Theory (Teubner, Stuttgart, 1998)

    Google Scholar 

  4. S. Ichimaru, Statistical Plasma Physics, vol. II: Condensed Plasmas (Westview, Boulder, 2004)

    Google Scholar 

  5. M. Bonitz, D. Semkat (eds.), Introduction to Computational Methods for Many-Body Physics (Rinton, Princeton, 2006)

    Google Scholar 

  6. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)

    Article  ADS  Google Scholar 

  7. H.M. Van Horn, Science 252, 384 (1991)

    Article  ADS  Google Scholar 

  8. M. Bonitz et al., J. Phys. A: Math. Gen. 36, 5921 (2003)

    Article  ADS  Google Scholar 

  9. M. Bonitz et al., Phys. Plasmas 15, 055704 (2008)

    Article  ADS  Google Scholar 

  10. E. Wigner, Phys. Rev. 46, 1002 (1934)

    Article  MATH  ADS  Google Scholar 

  11. D.J. Wineland, J.C. Bergquist, W.M. Itano, J.J. Bollinger, C.H. Manney, Phys. Rev. Lett. 59, 2935 (1987)

    Article  ADS  Google Scholar 

  12. M. Drewsen, C. Brodersen, L. Hornekær, J.S. Hangst, J.P. Schiffer, Phys. Rev. Lett. 81, 2878 (1998)

    Article  ADS  Google Scholar 

  13. T. Schätz, U. Schramm, D. Habs, Nature 412, 717 (2001)

    Article  ADS  Google Scholar 

  14. U. Schramm, T. Schätz, D. Habs, Phys. Rev. Lett. 87, 184801 (2001) and Phys. Stat. Sol. (b), 221, 231 (2000)

    Google Scholar 

  15. D.H.E. Dubin, T.M. O’Neill, Rev. Mod. Phys. 71, 87 (1999)

    Article  ADS  Google Scholar 

  16. A.V. Filinov, M. Bonitz, Yu.E. Lozovik, Phys. Rev. Lett. 86, 3851 (2001)

    Article  ADS  Google Scholar 

  17. J.H. Chu, I. Lin, Phys. Rev. Lett. 72, 4009 (1994)

    Article  ADS  Google Scholar 

  18. H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Möhlmann, Phys. Rev. Lett. 73, 652 (1994)

    Article  ADS  Google Scholar 

  19. Y. Hayashi, K. Tachibana, Jpn. J. Appl. Phys. 33, L804 (1994)

    Article  ADS  Google Scholar 

  20. M. Schlanges, M. Bonitz, A. Tschttschjan, Contrib. Plasma Phys. 35, 109 (1995)

    Article  ADS  Google Scholar 

  21. V.S. Filinov, M. Bonitz, W. Ebeling, V.E. Fortov, Plasma Phys. Contr. Fusion 43, 743 (2001)

    Article  ADS  Google Scholar 

  22. W. Ebeling, G. Norman, J. Stat. Phys. 110(3–6), 861 (2003)

    Article  MATH  Google Scholar 

  23. B. Holst, N. Nettelmann, R. Redmer, Contrib. Plasma Phys. 47, 368 (2007)

    Article  ADS  Google Scholar 

  24. J. Vorberger, I. Tamblyn, S.A. Bonev, B. Militzer, Contrib. Plasma Phys. 47, 375 (2007)

    Article  ADS  Google Scholar 

  25. W. Däppen, A. Nayfonov, Astrophys. J. Suppl. Ser. 127, 287 (2000)

    Article  ADS  Google Scholar 

  26. L. Segretain, Astron. Astrophys. 310, 485 (1996)

    ADS  Google Scholar 

  27. G. Chabrier, Astron. J. 414, 695 (1993)

    ADS  Google Scholar 

  28. A.Y. Potekhin, G. Chabrier, D.G. Yakovlev, Contrib. Plasma Phys. 41, 231 (2001)

    Article  ADS  Google Scholar 

  29. P. Loubeyre et al., High Pressure Res. 24, 25 (2004) and references therein

    Google Scholar 

  30. H.J. Kusch, J. Phys. E 18, 654 (1985)

    Article  ADS  Google Scholar 

  31. H. Hess, Contrib. Plasma Phys. 26, 209 (1986)

    Google Scholar 

  32. V.B. Mintsev, V.E. Fortov, High Temp. 20, 584 (1982)

    Google Scholar 

  33. V.B. Mintsev, V.K. Gryaznov, M.I. Kulish, V.E. Fortov, Contrib. Plasma Phys. 41, 119 (2001)

    Article  ADS  Google Scholar 

  34. E. Boggasch et al., Phys. Rev. Lett. 66, 1705 (1991)

    Article  ADS  Google Scholar 

  35. M.K. Matzen et al., Plasma Phys. Contr. Fusion 41, A175 (1999)

    Article  ADS  Google Scholar 

  36. V.B. Mintsev, V.E. Fortov, J. Phys. A: Math. Gen. 39, 4319 (2006)

    Article  ADS  Google Scholar 

  37. D.H.H. Hoffmann et al., Phys. Scripta T123, 1 (2006)

    Article  ADS  Google Scholar 

  38. M.D. Perry, G. Mourrou, Science 264, 917 (1994)

    Article  ADS  Google Scholar 

  39. J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139 (1972)

    Article  ADS  Google Scholar 

  40. R. Kodama et al., Nature 412, 798 (2001)

    Article  ADS  Google Scholar 

  41. M. Tabak et al., Phys. Plasmas 1, 1626 (1994)

    Article  ADS  Google Scholar 

  42. LLNL, Science and Technology Review, July/August 2007 (see also http://lasers.llnl.gov)

  43. M. Bonitz, V.S. Filinov, V.E. Fortov. P.R. Levashov, H. Fehske, Phys. Rev. Lett. 95, 235006 (2005)

    Google Scholar 

  44. P. Ludwig, A. Filinov, Yu. Lozovik, H. Stolz, M. Bonitz, Contrib. Plasma Phys. 47, 335 (2007)

    Article  ADS  Google Scholar 

  45. M. Bonitz, V.S. Filinov, V.E. Fortov, P.R. Levashov, H. Fehske, J. Phys. A: Math. Gen. 39, 4717 (2006)

    Article  ADS  Google Scholar 

  46. V. Filinov, H. Fehske, M. Bonitz, V.E. Fortov, P.R. Levashov, Phys. Rev. E 75, 036401 (2007)

    Article  ADS  Google Scholar 

  47. A.A. Abrikosov, J. Less-Common Met. 62, 451 (1978)

    Article  Google Scholar 

  48. V.S. Filinov, M. Bonitz, V.E. Fortov, JETP Lett. 72, 245 (2000) [Pis’ma v ZhETF 72, 361 (2000)]; V.S. Filinov, V.E. Fortov, M. Bonitz, D. Kremp, Phys. Lett. A 274, 228 (2000)

    Google Scholar 

  49. M.H. Thoma, IEEE Trans. Plasma Sci. 32, 738 (2004)

    Article  ADS  Google Scholar 

  50. M. Hofmann et al., Phys. Lett. B 478, 161 (2000)

    Article  ADS  Google Scholar 

  51. A. Peshier, B. Kämpfer, G. Soff, Phys. Rev. D 66, 094003 (2002)

    Article  ADS  Google Scholar 

  52. B.A. Gelman, E.V. Shuryak, I. Zahed, Phys. Rev. C 74, 044908 (2006)

    Article  ADS  Google Scholar 

  53. For this discovery, Chandrasekhar was awarded the Nobel prize in 1983. His original paper is: S. Chandrasekhar, Mon. Not. R. Astr. Soc. 95, 207 (1935)

    Google Scholar 

  54. V. Filinov, M. Bonitz, V.E. Fortov, P.R. Levashov, JETP Lett. 74, 384 (2001) [Pis’ma v ZhETF 74, 422 (2001)]

    Google Scholar 

  55. R.P. Feynman, Statistical Mechanics – A Set of Lectures (Frontiers in Physics) (Perseus, Reading, 1972)

    Google Scholar 

  56. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  57. K.B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  58. http://nobelprize.org/nobel\_prizes/physics/laureates/2001/ – Web page of the Nobel Foundation for the Nobel Lectures

  59. J. Böning, Superfluidity in mesoscopic systems of charged bosons. Diploma Thesis, Kiel University (2007)

    Google Scholar 

  60. A.V. Balatsky et al., Phys. Rev. B 75, 094201 (2007)

    Article  ADS  Google Scholar 

  61. P. Sindzingre, M.L. Klein, D.M. Ceperley, Phys. Rev. Lett. 63, 1601 (1989)

    Article  ADS  Google Scholar 

  62. A. Filinov, J. Böning, M. Bonitz, Yu.E. Lozovik, Phys. Rev. B 77, 214527 (2008)

    Article  ADS  Google Scholar 

  63. G.V. Chester, L. Reatto, Phys. Rev. 155, 88 (1967)

    Article  ADS  Google Scholar 

  64. A.F. Andreev, I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969)

    ADS  Google Scholar 

  65. A.J. Leggett, Phys. Rev. Lett. 25, 1543 (1970)

    Article  ADS  Google Scholar 

  66. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  67. A.B. Migdal, Zh. Eksp. Theor. Fiz. 37, 249 (1959)

    MathSciNet  Google Scholar 

  68. G. Baym, C. Pethick, D. Pines, Nature 224, 674 (1969)

    Article  ADS  Google Scholar 

  69. K. Balzer, M. Bonitz, J. Phys. A 42, 214020 (2009) (preprint ArXive:0810.2633)

    Google Scholar 

  70. K. Balzer, Nonequilibrium Green’s function approach to artificial atoms. Diploma Thesis, Kiel University (2007)

    Google Scholar 

  71. R. Balescu, Statistical Mechanics of Charged Particles (Wiley, London, 1963)

    MATH  Google Scholar 

  72. Yu.L. Klimontovich, Kinetic Theory of Nonideal Gases and Nonideal Plasmas (Pergamon, Oxford, 1982)

    Google Scholar 

  73. V.V. Belyi, Yu.A. Kukharenko, Contrib. Plasma Phys. 47, 240 (2007)

    Article  ADS  Google Scholar 

  74. D. Kremp, Th. Bornath, M. Bonitz, M. Schlanges, Phys. Rev. E 60, 4725 (1999); M. Bonitz, Th. Bornath, D. Kremp, M. Schlanges, W.D. Kraeft, Contrib. Plasma Phys. 39, 329 (1999)

    Google Scholar 

  75. H. Haberland, M. Bonitz, D. Kremp, Phys. Rev. E 64, 026405 (2001)

    Article  ADS  Google Scholar 

  76. D. Boercker, J.W. Dufty, Ann. Phys. (NY) 119, 43 (1979)

    Google Scholar 

  77. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962)

    MATH  Google Scholar 

  78. L.V. Keldysh, Zh. Eksp. Theor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 235 (1965)]

    Google Scholar 

  79. D. Bohm, Phys. Rev. 85, 166 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  80. D. Bohm, Phys. Rev. 85, 180 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  81. D.-A. Deckert, D. Durr, P. Pickl, J. Phys. Chem. A 111, 41, 10325 (2007)

    Article  Google Scholar 

  82. R.E. Wyatt. Quantum Dynamics with Trajectories (Springer, Berlin, 2005)

    MATH  Google Scholar 

  83. E. Madelung, Z. Physik 40, 332 (1926)

    Google Scholar 

  84. D. Bohm, J. Vigier, Phys. Rev. 96, 208 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  85. P. Holland, The Quantum Theory of Motion (Cambridge, New York, 1993)

    Book  Google Scholar 

  86. I. Burghardt, K. Moller, G. Parlant, L. Cederbaum, E. Bittner, Int. J. Quant. Chem. 100, 1153 (2004)

    Article  Google Scholar 

  87. L.P. Pitaevskii, Zh. Eksp. Theor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)]

    Google Scholar 

  88. E.P. Gross, Nuovo Cimento 20, 454 (1961)

    Article  MATH  Google Scholar 

  89. E.B. Kolomeisky et al., Phys. Rev. Lett. 85, 1146 (2000)

    Article  ADS  Google Scholar 

  90. G. Manfredi, F. Haas, Phys. Rev. B 64, 075316 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bonitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonitz, M., Filinov, A., Böning, J., Dufty, J.W. (2010). Introduction to Quantum Plasmas. In: Bonitz, M., Horing, N., Ludwig, P. (eds) Introduction to Complex Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10592-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10592-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10591-3

  • Online ISBN: 978-3-642-10592-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics