Skip to main content

The Use of Nonthermal Plasmas in Environmental Applications

  • Chapter
  • First Online:

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 59))

Abstract

Nonthermal plasmas are widely used environmental applications covering a broad and diverse range of topics, which have been studied extensively in laboratory, bench-scale investigations, particularly during the past two decades. However, only a few research breakthroughs were successfully translated into economically viable technologies for large-scale industrial applications. Those include ozonizers using dielectric barrier discharges and electrostatic precipitators using corona discharges. In this chapter, we describe the current status of ozonizers and electrostatic precipitators. We also try to identify some of the bottlenecks that prevent other nonthermal plasma-based environmental technologies from becoming widely applicable. As an example, we look at the use of nonthermal plasmas for the treatment of gaseous and (to a lesser extent) liquid waste streams, with an emphasis on waste streams containing volatile organic compounds (VOCs). Bottlenecks preventing or slowing down the rapid and efficient translation of successful bench-scale studies to widely used industrial technologies include the identification, quantification, and control of byproducts produced in the plasma chemical reactions and establishing carbon closure (i.e., the accounting of the ultimate fate of each initial carbon atom that is exposed to the plasma).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.M. Penetrante, S.E. Schultheiss (eds.), Non-Thermal Plasma Technologies for Pollution Control, NATO-ASI Series, vol. 34A/B (Plenum, New York, 1993)

    Google Scholar 

  2. E.E. Kunhardt, IEEE Trans. Plasma Sci. 28, 189 (2000)

    Article  ADS  Google Scholar 

  3. K.H. Schoenbach, K. Becker, E. Kunhardt, in Non-Equilibrium Air Plasmas at Atmospheric Pressure, ed. by K.H. Becker, U. Kogeschatz, K.H. Schoenbach, R.J. Barker (IOP, Bristol, 2004). Chapter 6 “DC and Low-Frequency Air Plasma Sources” and references therein

    Google Scholar 

  4. K.H. Becker, K.H. Schoenbach, J.G. Eden, J. Phys. D 39, R55 (2006)

    Article  ADS  Google Scholar 

  5. U. Kogelschtz, in Non-Equilibrium Air Plasmas at Atmospheric Pressure, ed. by K.H. Becker, U. Kogeschatz, K.H. Schoenbach, R.J. Barker (IOP, Bristol, 2004). Chapter ?? “Applications of Atmospheric-Pressure Air Plasmas” and references therein

    Google Scholar 

  6. W. Siemens, Poggendorff’s Ann. Phys. Chem. 102, 66 (1857)

    Article  Google Scholar 

  7. W. Ohlmüller, Über die Einwirkung des Ozons auf Bakterien (Springer, Berlin, 1891)

    Google Scholar 

  8. U. Kogelschatz, in Process Technologies for Water Treatment, ed. by S. Stucki (Plenum, New York, 1988), p. 87

    Google Scholar 

  9. U. Kogelschatz, B. Eliasson, in Handbook of Electrostatic Processes, ed. by J.S. Chang, A.J. Kelly, J.M. Crowley (Dekker, New York, 1995), p. 581

    Google Scholar 

  10. G. Pietsch, V.I. Gibalov, Pure Appl. Chem. 70, 1169 (1998)

    Article  Google Scholar 

  11. J.T. Herron, D.S. Green, Plasma Chem. Plasma Process. 21, 459 (2001) and references therein to earlier publications

    Google Scholar 

  12. B. Eliasson, U. Kogelschatz, in Proceedings of the 8th International Symposium on Plasma Chemistry (ISPC-8), Tokyo, Japan, vol. 2 (1987), p. 736

    Google Scholar 

  13. M. Kogoma, S. Okazaki, J. Phys. D: Appl. Phys. 27, 1985 (1994)

    Article  ADS  Google Scholar 

  14. G. Vezzu, Private Communication (2006)

    Google Scholar 

  15. G. Vezzù, J.L. Lopez, A. Freilich, K.H. Becker, Optimization of Large-Scale Ozone Generators, IEEE Trans. Plasma Sci. 37, 890 (2009)

    Article  ADS  Google Scholar 

  16. W. Gilbert, Tractatus, sive Physiologia de Magnete, Magnetisque corporibus mango Magnete tellure, sex libris comprehensus (Excudebat Petrus Short, London, 1600)

    Google Scholar 

  17. M. Hohlfeld, Arch. f. d. ges. Naturl. 2, 205 (1824)

    Google Scholar 

  18. O.J. Lodge, J. Soc. Chem. Ind. 5, 572 (1886)

    Google Scholar 

  19. F.C. Cottrell, J. Ind. Eng. Chem. 3, 542 (1911)

    Article  Google Scholar 

  20. W. Deutsch, Z. Tech. Phys. 6, 423 (1925)

    Google Scholar 

  21. W. Deutsch, Ann. Phys. 76, 729 (1925)

    Article  Google Scholar 

  22. R. Seeliger, Z. Tech. Phys. 7, 49 (1926)

    Google Scholar 

  23. J.M. Crowley, in Wiley Encyclopedia of Electrical and Electronic Engineering, ed. by J.G. Webster (Wiley-Interscience, New York, 1998), p. 719

    Google Scholar 

  24. M.K. Mazumder, in Wiley Encyclopedia of Electrical and Electronic Engineering, ed. by J.G. Webster (Wiley-Interscience, New York, 1999), p. 15

    Google Scholar 

  25. N.A. Fuchs, The Mechanics of Aerosols (Pergamon, Oxford, 1964)

    Google Scholar 

  26. W. Deutsch, Ann. Phys. 68, 335 (1922)

    Article  Google Scholar 

  27. E.E. Kunhardt, K. Becker, U.S. Patents 5,872,426 (1999), 6,005,349 (2000), 6,147,452 (2004), and 6,879,103 (2005)

    Google Scholar 

  28. E.E. Kunhardt, K. Becker, L.E. Amorer, in Proceedings of the 12th International Conference on Gas Discharges and Their Applications, Greifswald, Germany, 1997, p. I-374

    Google Scholar 

  29. E.E. Kunhardt, K. Becker, L.E. Amorer, L. Palatini, Bull. Am. Phys. Soc. 42, 1716 (1997)

    Google Scholar 

  30. E.E. Kunhardt, G.P. Korfiatis, K. Becker, C. Christodoulatos, in Proceedings of the 4th International Conference on Protection and Restoration of the Environment, Halkidiki, Greece, 1998, ed. by G.P. Korfiatis

    Google Scholar 

  31. L. Moskwinski, P.J. Ricatto, N. Abramzon, K. Becker, G.P. Korfiatis, C. Christodoulatos, in Proceedings of the 14th Symposium on Applications of Plasma Processes (SAPP), Jasna, Slovakia, 2003, p. 17

    Google Scholar 

  32. N.S. Panikov, A. Paduraru, R. Crowe, P.J. Ricatto, C. Christodoulatos, K. Becker, IEEE Trans. Plasma Sci. 30, 1424 (2002)

    Article  ADS  Google Scholar 

  33. L.E. Amorer, Ph.D. Thesis, Stevens Institute of Technology (1999) (unpublished data)

    Google Scholar 

  34. S.-M. Yin, C. Christodoulatos, K. Becker, A. Koutsospyros, in Proceedings of the International Conference on Environmental Systems (ICES) (SAE International, Colorado Springs, 2003). Paper No. 2003-01-2501, on CD ROM

    Google Scholar 

  35. A. Koutsospyros, S.-M. Yin, C. Christodoulatos, K. Becker, Int. J. Mass Spectrom. 233, 305 (2004)

    Article  ADS  Google Scholar 

  36. A. Koutsospyros, S.-M. Yin, C. Christodoulatos, K. Becker, IEEE Trans. Plasma Sci. 33, 42 (2005)

    Article  ADS  Google Scholar 

  37. C.M. Nunez, G.H. Ramsey, W.H. Ponder, J.H. Abbott, L.E. Hamel, P.H. Kariher, Air Waste 43, 242 (1993)

    Google Scholar 

  38. B.M. Penetrante, M.C. Hsiao, J.N. Bardsley, B.T. Merrit, G.E. Voglin, A. Kuthiz, C.P. Burkhart, J.R. Bayless, Plasma Sour. Sci. Technol. 6, 251 (1997)

    Article  ADS  Google Scholar 

  39. S. Futurama, A. Zhang, G. Prieto, T. Yamamoto, IEEE Trans. Ind. Appl. 34, 967 (1998)

    Article  Google Scholar 

  40. T. Yamamoto, J. Electrostat. 42, 227 (1997)

    Article  Google Scholar 

  41. Y. S. Mok, C. M. Nam, M. H. Cho, I.-S. Nam, IEEE Trans. Plasma Sci. 30, 408 (2002)

    Article  ADS  Google Scholar 

  42. H. Qiu, K. Martus, W. Y. Lee, K. Becker, Int. J. Mass Spectrom. 233, 19 (2004)

    Article  ADS  Google Scholar 

  43. O. Levenspiel, The Chemical Reactor Omnibook (Oregon State University Press, Corvallis, 1993)

    Google Scholar 

  44. M. Sato, T. Ohgiyama, S. Clements, IEEE Trans. Ind. Appl. 32, 106 (1996)

    Article  Google Scholar 

  45. B. Sun, M. Sato, J.S. Clements, J. Electrostat. 39, 189 (1997)

    Article  Google Scholar 

  46. S. Ihara, M. Miichi, S. Satoh, C. Yamabe, IEEE Int. Pulsed Power Conf. 5451, 1291 (1999)

    Google Scholar 

  47. H. Akiyama, IEEE Trans. Diel. Electr. Insul. 7, 646 (2000)

    Article  Google Scholar 

  48. A.M. Anpilov, E.M. Barkhudarov, Yu.B. Bark, J. Phys. D 34, 993 (2001)

    Article  ADS  Google Scholar 

  49. A. Abou-Ghazala, S. Katsuki, K. H. Schoenbach, F.C. Dobbs, K.R. Moreira, IEEE Trans. Plasma Sci. 30, 1449 (2002)

    Article  ADS  Google Scholar 

  50. P. Lukes, A.T. Appleton, B. Locke, IEEE Trans. Ind. Appl. 40, 60 (2004)

    Article  Google Scholar 

  51. P. Lukes, B. Locke, Ind. Eng. Chem. Res. 44, 2921 (2005)

    Article  Google Scholar 

  52. P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, M. Cernak, Plasma Sour. Sci. Technol. 8, 258 (1999)

    Article  ADS  Google Scholar 

  53. T. Miichi, S. Ihara, S. Satoh, C. Yamabe, Vacuum 59, 236 (2000)

    Article  Google Scholar 

  54. C. Yamabe, F. Takeshita, T. Miichi, N. Hayashi, S. Ihara, Plasma Process. Polym. 2, 246 (2005)

    Article  Google Scholar 

  55. S. Gershman, O. Mozgina, A. Belkind, K. Becker, E. Kunhardt, Contrib. Plasma Phys. 46, 19 (2007)

    Article  ADS  Google Scholar 

  56. C.J. Hochanadel, J. Phys. Chem. 6, 587 (1952)

    Article  Google Scholar 

  57. B. Sun, M. Sato, J. Clemens, J. Phys. D 32, 1908 (1999)

    Article  ADS  Google Scholar 

  58. Y. Wen, H. Liu, W. Liu, X. Jiang, Plasma Chem. Process. 5, 137 (2005)

    Article  ADS  Google Scholar 

  59. O Mozgina, S. Gershman, K. Becker, C. Christodolatos, A. Belkind, in Atomic and Surface Physics and Related Phenomena, ed. by V. Grill, T.D. Märk (University of Innsbruck Press, Innsbruck, Austria, 2006), p. 136

    Google Scholar 

  60. K.-D. Zoh, M.K. Stenstrom, Water Res. 36, 1331 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt H. Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, K.H. (2010). The Use of Nonthermal Plasmas in Environmental Applications. In: Bonitz, M., Horing, N., Ludwig, P. (eds) Introduction to Complex Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10592-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10592-0_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10591-3

  • Online ISBN: 978-3-642-10592-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics