Skip to main content

Molecular Dynamics Simulation of Strongly Correlated Dusty Plasmas

  • Chapter
  • First Online:
Introduction to Complex Plasmas

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 59))

Abstract

This chapter gives a tutorial introduction to the molecular dynamics (MD) technique as a first-principle description of classical many-particle dynamics. The goal is to provide practical insight into the current status of theoretical dusty plasma research as well as to present the necessary ingredients for a successful MD simulation in one place. As typical examples of the application of MD, we concentrate on two directions of current research interest: (1) the structural properties of spherical dust crystals in traps and (2) the transport properties such as diffusion of liquid unconfined, infinite dust systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Chu, I. Lin, Phys. Rev. Lett. 72, 4009 (1994)

    Article  ADS  Google Scholar 

  2. H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Möhlmann, Phys. Rev. Lett. 73, 652 (1994)

    Article  ADS  Google Scholar 

  3. Y. Hayashi, K. Tachibana, Jpn. J. Appl. Phys. 33, L804 (1994)

    Article  ADS  Google Scholar 

  4. A. Melzer, T. Trottenberg, A. Piel, Phys. Lett. A 191, 301 (1994)

    Article  ADS  Google Scholar 

  5. V.E. Fortov, A.V. Ivlev, S.A. Khrapak, A.G. Khrapak, G.E. Morfill, Phys. Rep. 421, 1 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Bouchoule, Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing (Wiley, New York, 1999)

    Google Scholar 

  7. G.S. Selwyn, J. Singh, R.S. Bennett, J. Vac. Sci. Technol. A 7, 2758 (1988)

    Article  ADS  Google Scholar 

  8. P. Roca i Cabarrocas, J. Non-Cryst. Solids 31, 266 (2000)

    Google Scholar 

  9. F. Verheest (ed.), Waves in Dusty Space Plasmas (Kluwer, Dordrecht, 2002)

    Google Scholar 

  10. K. Qiao, T.W. Hyde, Adv. Space Res. 34, 2390 (2004)

    Article  ADS  Google Scholar 

  11. O. Arp, D. Block, A. Piel, A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). For a recent overview, see M. Bonitz, C. Henning, D. Block, Reports Prog. Physics 73, 066501 (2010)

    Google Scholar 

  12. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957)

    Article  ADS  Google Scholar 

  13. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 31, 459 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  14. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 33, 1439 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Mac Kernan, M. Mareschal, SIMU Newsletter 15 (2002)

    Google Scholar 

  16. H. Ikezi, Phys. Fluids 29, 1764 (1986)

    Article  ADS  Google Scholar 

  17. D.H.E. Dubin, T.M. O’Neill, Rev. Mod. Phys. 71, 87 (1999)

    Article  ADS  Google Scholar 

  18. G. Morfill, H. Kersten, New J. Phys. 5 (2003)

    Google Scholar 

  19. O. Arp, D. Block, M. Klindworth, A. Piel, Phys. Plasmas 12, 122102 (2005)

    Article  ADS  Google Scholar 

  20. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)

    Article  ADS  Google Scholar 

  21. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  22. L. Verlet, Phys. Rev. 159, 98 (1967)

    Article  ADS  Google Scholar 

  23. W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982)

    Article  ADS  Google Scholar 

  24. M. Tuckerman, B.J. Berne, G.J. Martyna, J. Chem. Phys. 97, 1990 (1992)

    Article  ADS  Google Scholar 

  25. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic, London, 2006)

    Google Scholar 

  26. J.R. Cash, A.H. Karp, ACM Trans. Math. Softw. 16, 201 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  28. J.M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, New York, 1976)

    Google Scholar 

  29. S.C. Harvey, R.K.Z. Tan, T.E. Cheatham III, J. Comput. Chem. 19, 726 (1998)

    Article  Google Scholar 

  30. H.J.C Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)

    Google Scholar 

  31. H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)

    Article  ADS  Google Scholar 

  32. T. Soddemann, B. Dünweg, K. Kremer, Phys. Rev. E 68, 46702 (2003)

    Article  ADS  Google Scholar 

  33. P. Warren, P. Espanol, Europhys. Lett. 30, 191196 (1995)

    Google Scholar 

  34. S. Nosé, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  35. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  36. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic, Orlando, 2001)

    Google Scholar 

  37. G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Mol. Phys. 87(5), 1117 (1996)

    Article  ADS  Google Scholar 

  38. R. Mannella, Phys. Rev. E 69, 41107 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Allen, D. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987)

    MATH  Google Scholar 

  40. O. Vaulina, S. Khrapak, G. Morfill, Phys. Rev. E 66, 016404 (2002)

    Article  ADS  Google Scholar 

  41. P.P. Ewald, Ann. Phys. 369, 253 (1921)

    Article  Google Scholar 

  42. A.Y. Toukmaji, J.A. Board, Comput. Phys. Commun. 95, 73 (1996)

    Article  MATH  ADS  Google Scholar 

  43. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (Institute of Physics, Bristol, 1988)

    MATH  Google Scholar 

  44. C. Sagui, T.A. Darden, Annu. Rev. Biophys. Biomol. Struct. 28, 155 (1999)

    Article  Google Scholar 

  45. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577 (1995)

    Article  ADS  Google Scholar 

  46. E.L. Pollock, J. Glosli, Comput. Phys. Commun. 95, 93 (1996)

    Article  MATH  ADS  Google Scholar 

  47. M.S. Green, J. Chem. Phys. 19, 1036 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  48. M.S. Green, Phys. Rev. 119, 829 (1960)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Einstein, Ann. Phys. 322, 549 (1905)

    Article  Google Scholar 

  51. E. Helfand, Phys. Rev. 119, 1 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  52. J.J. Erpenbeck, Phys. Rev. E 51, 4296 (1995)

    Article  ADS  Google Scholar 

  53. V.A. Schweigert, F.M. Peeters, Phys. Rev. B 51, 7700 (1995)

    Article  ADS  Google Scholar 

  54. A. Filinov, M. Bonitz, Yu.E. Lozovik, Phys. Rev. Lett. 86, 3851 (2001)

    Article  ADS  Google Scholar 

  55. M. Bonitz, V. Golubnychiy, A.V. Filinov, Yu.E. Lozovik, Microelectron. Eng. 63, 141 (2002)

    Article  Google Scholar 

  56. S.L. Gilbert, J.J. Bollinger, D.J. Wineland, Phys. Rev. Lett. 60, 2022 (1988)

    Article  ADS  Google Scholar 

  57. A. Mortensen, Dissertation, University of Aarhus (2005)

    Google Scholar 

  58. P. Ludwig, S. Kosse, M. Bonitz, Phys. Rev. E 71, 046403 (2005)

    Article  ADS  Google Scholar 

  59. H. Baumgartner, H. Kählert, V. Golubnychiy, C. Henning, S. Käding, A. Melzer, M. Bonitz, Contrib. Plasma Phys. 47, 281 (2007)

    Article  ADS  Google Scholar 

  60. H. Kählert, P. Ludwig, H. Baumgartner, M. Bonitz, D. Block, S. Käding, A. Melzer, A. Piel, Phys. Rev. E 78, 036408 (2008)

    Article  ADS  Google Scholar 

  61. H. Baumgartner, D. Asmus, V. Golubnychiy, P. Ludwig, H. Kählert, M. Bonitz, New J. Phys. 10, 093019 (2008)

    Article  ADS  Google Scholar 

  62. M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, A. Filinov, Phys. Rev. Lett. 96, 075001 (2006)

    Article  ADS  Google Scholar 

  63. D. Block, S. Käding, A. Melzer, A. Piel, H. Baumgartner, M. Bonitz, Phys. Plasmas 15, 040701 (2008)

    Article  ADS  Google Scholar 

  64. B. Liu, J. Goree, Phys. Rev. Lett. 100, 055003 (2008)

    Article  ADS  Google Scholar 

  65. S. Ratynskaia, K. Rypdal, C. Knapek, S. Khrapak, A.V. Milovanov, A. Ivlev, J.J. Rasmussen, G.E. Morfill, Phys. Rev. Lett. 96, 105010 (2006)

    Article  ADS  Google Scholar 

  66. R.A. Quinn, J. Goree, Phys. Rev. Lett. 88, 195001 (2002)

    Article  ADS  Google Scholar 

  67. Y.-J. Lai, I. Lin, Phys. Rev. Lett. 89, 155002 (2002)

    Article  ADS  Google Scholar 

  68. W.-T. Juan, I. Lin, Phys. Rev. Lett. 80, 3073 (1998)

    Article  ADS  Google Scholar 

  69. W.-T. Juan, M.-H. Chen, I. Lin, Phys. Rev. E 64, 016402 (2001)

    Article  ADS  Google Scholar 

  70. S. Nunomura, D. Samsonov, S. Zhdanov, G. Morfill, Phys. Rev. Lett. 96, 015003 (2006)

    Article  ADS  Google Scholar 

  71. T. Ott, M. Bonitz, Z. Donkó, P. Hartmann, Phys. Rev. E 78, 026409 (2008). More recent results on superdiffusion can be found in the papers by T. Ott et al., Phys. Rev. Lett. 103, 099501 (2009) and Phys. Rev. Lett. 103, 195001 (2009)

    Google Scholar 

  72. M. Lampe, G. Joyce, G. Ganguli, V. Gavrishchaka, Phys. Plasmas 7, 3851 (2000)

    Article  ADS  Google Scholar 

  73. M. Lampe, V. Gavrishchaka, G. Ganguli, G. Joyce, Phys. Rev. Lett. 86, 5278 (2001)

    Article  ADS  Google Scholar 

  74. G. Joyce, M. Lampe, G. Ganguli, Phys. Rev. Lett. 88, 095006 (2002)

    Article  ADS  Google Scholar 

  75. M. Lampe, G. Joyce, G. Ganguli, IEEE Trans. Plasma Sci. 33, 57 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torben Ott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ott, T., Ludwig, P., Kählert, H., Bonitz, M. (2010). Molecular Dynamics Simulation of Strongly Correlated Dusty Plasmas. In: Bonitz, M., Horing, N., Ludwig, P. (eds) Introduction to Complex Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10592-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10592-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10591-3

  • Online ISBN: 978-3-642-10592-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics