Skip to main content
Book cover

Zinc Oxide pp 121–168Cite as

Intrinsic Linear Optical Properties Close to the Fundamental Absorption Edge

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 120))

Abstract

In this chapter, we review the intrinsic linear optical properties of ZnO close to the fundamental absorption edge. This comprises band-to-band transitions and free excitons and polaritons in bulk samples and epitaxial layers; free and localized excitons and polaritons in quantum wells and wires, including nanorods; also localized excitons in alloys and in quantum dots (or nano crystals) and finally cavity polaritons. By the term “free excitons”, we mean the quanta of the intrinsic electronic excitation in semiconductors (and insulators), which can move freely through the sample and which are described by a plane wave factor exp(i Kr) in d dimensions (d = 3, 2 or 1), where K is the wave vector of the centre of mass motion described by r, multiplied by the envelope function of the relative (hydrogen-like) motion of electron and hole around their common centre of gravity. By the terms “bound exciton complexes” or “bound excitons” [(BEC) and (BE), respectively], we understand excitons that are bound to some centres like neutral or ionized donors or neutral acceptors but also to more complex centres. They will be treated in Chap. 7. In contrast, by the term “localized excitons”, we mean electron–hole pairs, which are localized by disorder like intrinsic alloy disorder, for example, in Mg1−xZn x O and/or fluctuations of well (or wire) width in quantum structures. These phenomena are inherent to alloys and to structures of reduced dimensionality and are therefore included in this chapter. The influence of external fields on both free and bound excitons is then covered in Chap. 8.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Klingshirn, Semiconductor Optics, 3rd edn. (Springer, Berlin, 2007)

    Google Scholar 

  2. C. Klingshirn, phys. stat. sol. B 244, 3027 (2007)

    Google Scholar 

  3. C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007)

    Google Scholar 

  4. S. Nudelman, S.S. Mitra eds., Optical Properties of Solids, NATO ASI series (Plenum Press, New York, 1969)

    Google Scholar 

  5. F. Wooten, Optical Properties of Solids (Academic, New York, 1972)

    Google Scholar 

  6. H. Haken, Quantenfeldtheorie des Festkörpers (Teubner, Stuttgart, 1973)

    Google Scholar 

  7. O. Madelung, Introduction to Solid State Theory, Springer Series in Solid State Sciences 2, (Springer, Berlin, 1981)

    Google Scholar 

  8. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 3rd edn. (World Scientific, Singapore, 1994)

    Google Scholar 

  9. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996)

    Google Scholar 

  10. F. Bassani, G.P. Paravicini, Electronic States and Optical Transitions (Pergamon Press, Oxford, 1975)

    Google Scholar 

  11. S. Nakajima, Y. Toyozawa, R. Abe, The Physics of Elementary Excitations, Springer Series in Solid State Sciences 12, (Springer, Berlin, 1980)

    Google Scholar 

  12. H. Haug, S. Schmitt-Rink, Prog. Quantum Electron 9, 3 (1984)

    Google Scholar 

  13. M. Ueta et al., Excitonic Processes in Solids, Springer Ser. Solid State Sci., vol. 60 (Springer, Berlin, 1986)

    Google Scholar 

  14. N. Peyghambarian, S.W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, Englewood Cliffs, NJ 1993)

    Google Scholar 

  15. Y. Toyozawa, Optical Processes in Solids (Cambridge University Press, Cambridge 2003)

    Google Scholar 

  16. C. Klingshirn, H. Haug, Phys. Rep. 70, 315 (1981)

    Google Scholar 

  17. B. Hönerlage et al., Phys. Rep. 124, 161 (1985)

    Google Scholar 

  18. Ü. Özgür et al., J. Appl. Phys. 98, 041301 (2005)

    Google Scholar 

  19. J.J. Hopfield, D.G. Thomas, J. Phys. Chem. Solids 12, 276 (1960)

    Google Scholar 

  20. D.G. Thomas, J. Phys. Chem. Solids 15, 86 (1960)

    Google Scholar 

  21. J.J. Hopfield, J. Phys. Chem. Solids 15, 86 (1960)

    Google Scholar 

  22. D.G. Thomas, J.J. Hopfield, Phys. Rev. 132, 657 (1961)

    Google Scholar 

  23. D.G. Thomas, J.J. Hopfield, Phys. Rev. 132, 563 (1963)

    Google Scholar 

  24. R. Dietz, J.J. Hopfield, D.G. Thomas, J. Appl. Phys. 32(10) 2282 (1965)

    Google Scholar 

  25. J.J. Hopfield, D.G. Thomas, Phys. Rev. Lett. 15, 22 (1965)

    Google Scholar 

  26. R. Helbig, Freie und Gebundene Exzitonen in ZnO, Habilitation Thesis, Erlangen, 1975

    Google Scholar 

  27. K. Hümmer, Exzitonische Polaritonen in einachsigen Kristallen, Habilitation Thesis, Erlangen, 1978

    Google Scholar 

  28. U. Rößler, Phys. Rev. 184, 733 (1969)

    Google Scholar 

  29. A. Schleife et al. Appl. Phys. Lett. 91, 241915 (2007)

    Google Scholar 

  30. L.C. Lew Yan Voon et al. Phys. Rev. B 53 10703 (1996)

    Google Scholar 

  31. K. Hazu et al., J. Appl. Phys. 95, 5498 (2004)

    Google Scholar 

  32. K. Hümmer, R. Helbig, M. Baumgärtner, Phys. Stat. Sol. 86, 527 (1978)

    Google Scholar 

  33. R. Kuhnert, R. Helbig, K. Hümmer, Phys. Stat. Sol. 107, 83 (1981)

    Google Scholar 

  34. B. Gil, Phys. Rev. B 64, 201310 (2001)

    Google Scholar 

  35. J. Lagois, Phys. Rev. B 16, 1699 (1977)

    Google Scholar 

  36. J. Lagois, Phys. Rev. B 23, 5511 (1981)

    Google Scholar 

  37. R.L. Weiher, W.C. Tait, Phys. Rev. 166, 791 (1968)

    Google Scholar 

  38. R.L. Weiher, W.C. Tait, Phys. Rev. 185, 1114 (1969)

    Google Scholar 

  39. R.L. Weiher, W.C. Tait, Phys. Rev. B 5, 623 (1972)

    Google Scholar 

  40. A.A. Toropov et al. Phys. Rev. B 69, 165205 (2004)

    Google Scholar 

  41. K. Hümmer, P. Gebhardt, Phys. Stat. Sol. B 85, 271 (1978)

    Google Scholar 

  42. R. Kuhnert, R. Helbig, K. Hümmer, Phys. Stat. Sol. B 107, 83 (1981)

    Google Scholar 

  43. W.Y. Liang, A.D. Yoffe, Phys. Rev. Lett. 20, 59 (1968)

    Google Scholar 

  44. K. Hümmer, Phys. Stat. Sol. B, 56, 249 (1973)

    Google Scholar 

  45. U. Rössler et al. eds., Landolt-Börnstein, New Series, Group III, Vol. 17B, 22, 41B (Springer, Berlin, 1999)

    Google Scholar 

  46. T. Skettrup, Phys. Stat. Sol. 42, 813 (1970)

    Google Scholar 

  47. T. Skettrup, Phys. Stat. Sol. 109, 663 (1982)

    Google Scholar 

  48. D.C. Reynolds, C.W. Litton, T.C. Collins, Phys. Rev. A 140, 1726 (1965)

    Google Scholar 

  49. Y.S. Park et al., Phys. Rev. 143, 512 (1966)

    Google Scholar 

  50. B. Segall, Phys. Rev. 163, 769 (1967)

    Google Scholar 

  51. D.C. Reynolds et al., J. Appl. Phys. 86, 5598 (1999)

    Google Scholar 

  52. E. McGlynn et al., Physica B, 340–342, 230 (2003)

    Google Scholar 

  53. S.F. Chichibu et al., J. Appl. Phys. 93, 756 (2003)

    Google Scholar 

  54. A. Teke et al., Phys. Rev. B 70, 195207 (2004)

    Google Scholar 

  55. B. Gil et al., Jpn. J. Appl. Phys. 40, L 1089 (2001)

    Google Scholar 

  56. J. Lagois, Phys. Rev. B 23, 5511 (1981)

    Google Scholar 

  57. E. Mataguli, A.G. Thompson, M. Cardona, Phys. Rev. 176, 950 (1968)

    Google Scholar 

  58. A. Gavini, M. Cardona, Phys. Rev. 1, 672 (1970)

    Google Scholar 

  59. S.F. Chichibu et al., Semicond. Sci. Technol. 20, S67 (2005)

    Google Scholar 

  60. S. Tsoi et al., Phys. Rev. B 74, 165203 (2006)

    Google Scholar 

  61. S.I. Pekar, Sov. Phys. JETP, 9, 314 (1959)

    Google Scholar 

  62. S.I. Pekar, Sov. Phys. JETP 11, 1286 (1960)

    Google Scholar 

  63. S.I. Pekar, Phys. Stat. Sol. B 82, 83 (1977)

    Google Scholar 

  64. K. Bohnert, G. Schmieder, C. Klingshirn, Phys. Stat. Sol. B 98, 175 (1980)

    Google Scholar 

  65. C. Klingshirn et al., Phys. Rev. B 75, 115203 (2007)

    Google Scholar 

  66. E. Mollwo, Reichsber, Physik 1, 1 (1944)

    Google Scholar 

  67. H. Heiland, E. Mollwo, F. Stöckmann, Solid State Phys. 8, 191 (1959)

    Google Scholar 

  68. J.F. Muth et al., J. Appl. Phys. 85, 7884 (1999)

    Google Scholar 

  69. A. Yamamoto et al., Sol. State Commun. 122, 29 (2002)

    Google Scholar 

  70. D.C. Agarwal et al., J. Appl. Phys. 99, 123105 (2006)

    Google Scholar 

  71. G.S. Fu et al., Physica B 382, 17 (2006)

    Google Scholar 

  72. K. Ramamoorthy et al., Curr. Appl. Phys. 6, 103 (2006)

    Google Scholar 

  73. G. Blattner et al., Phys. Rev. B 25, 7413 (1982)

    Google Scholar 

  74. D.C. Reynolds et al., Phys. Rev. B 60, 2340 (1999)

    Google Scholar 

  75. D.C. Reynolds et al., Appl. Phys. Lett. 79, 3794 (2001)

    Google Scholar 

  76. C. Klingshirn et al., Superlattice. Microst. 38, 209 (2005)

    Google Scholar 

  77. C. Klingshirn, Phys. Stat. Sol. B 71, 547 (1975)

    Google Scholar 

  78. R. Hauschild et al., Phys. Stat. Sol. C 3(4), 980 (2006)

    Google Scholar 

  79. X.T. Zhang et al., J. Lumin. 99, 149 (2002)

    Google Scholar 

  80. W. Shan et al., Appl. Phys. Lett. 86, 191911 (2005)

    Google Scholar 

  81. G. Hvedstrup Jensen, T. Skettrup, Phys. Stat. Sol. B 60, 169 (1973)

    Google Scholar 

  82. G. Hvedstrup Jensen, Phys. Stat. Sol. B 64, K51 (1974)

    Google Scholar 

  83. D.W. Hamby et al., J. Appl. Phys. 93, 3214 (2003)

    Google Scholar 

  84. F.J. Manjón et al., Sol. State Commun. 128, 35 (2003)

    Google Scholar 

  85. J. Serrano et al., Phys. Rev. Lett. 90, 55510 (2003)

    Google Scholar 

  86. J. Serrano et al., Phys. Rev. B 69, 094306 (2004)

    Google Scholar 

  87. L. Wang, N.C. Giles, J. Appl. Phys. 94, 973 (2003)

    Google Scholar 

  88. Y.P. Varshni, Physica 34, 149 (1967)

    Google Scholar 

  89. R. Pässler, J. Appl. Phys. 89, 6235 (2001)

    Google Scholar 

  90. T. Makino et al., Appl. Phys. Lett. 76, 3549 (2000)

    Google Scholar 

  91. S. Adachi et al., Semicond. Sci.Technol. 19, S276 (2004)

    Google Scholar 

  92. K. Hazu et al., J. Appl. Phys 96, 1270 (2004)

    Google Scholar 

  93. E. Mollwo, Z. Angew. Physik 6, 257 (1954)

    Google Scholar 

  94. B. Andress, Z. Phys. 170, 1 (1962)

    Google Scholar 

  95. W.L. Bond, J. Appl. Phys. 36, 1674 (1965)

    Google Scholar 

  96. Y.S. Park, J.R. Schneider, J. Appl. Phys. 39, 3049 (1968)

    Google Scholar 

  97. R. Schmidt et al., Appl. Phys. Lett. 82, 2262 (2003)

    Google Scholar 

  98. M. Hauser et al., Appl. Phys. Letters, 92, 211105 (2008)

    Google Scholar 

  99. J. Fallert et al., Opt. Express 16, 1125 (2008)

    Google Scholar 

  100. G. Heiland, P. Kunstmann, H. Pfister, Z. Phys. 176, 485 (1963)

    Google Scholar 

  101. A. Klein, Z. Phys. 188, 352 (1965)

    Google Scholar 

  102. G. Heiland, P. Kunstmann, Surf. Sci. 13, 72 (1969)

    Google Scholar 

  103. Y. Ding, Z.L. Wang, Surf. Sci. 601, 425 (2007)

    Google Scholar 

  104. M.W. Allen et al., Appl. Phys. Lett. 91, 053512 (2007)

    Google Scholar 

  105. T.P. Bartelt et al., Proc. SPIE 6895, 689502 (2008)

    Google Scholar 

  106. H. Kalt, in Landolt-Börnstein, Group III Vol. 34C Part 2 C. Klingshirn ed. (Springer, Heidelberg, 2004)

    Google Scholar 

  107. W.I. Park, et al., Appl. Phys. Lett. 82, 964 (2003)

    Google Scholar 

  108. B.P. Zhang et al., Appl. Phys. Lett. 83, 1635 (2003)

    Google Scholar 

  109. Q.X. Zhao et al., Appl. Phys. Lett. 83, 165 (2003)

    Google Scholar 

  110. I. Shalish, H. Temkin, V. Narayanamurti, Phys. Rev. B 69, 245401 (2004)

    Google Scholar 

  111. M. Watanabe et al., Appl. Phys. Lett. 86, 221907 (2005)

    Google Scholar 

  112. L. Wischmeier et al., Appl. Phys. A 84,111 (2004)

    Google Scholar 

  113. L. Wischmeier et al., Phys. Stat. Sol. B 243, 919 (2006)

    Google Scholar 

  114. H. Priller et al., J. Lumin. 112, 173 (2005)

    Google Scholar 

  115. R. Hauschild et al., Phys. Stat. Sol. B 243, 853 (2006)

    Google Scholar 

  116. Y. Liang et al., Physica E 33, 191 (2006)

    Google Scholar 

  117. J.W. Hsu et al., Appl. Phys. Lett. 88, 252103 (2006)

    Google Scholar 

  118. D. Wang et al., J. Appl. Phys. 99, 113509 (2006)

    Google Scholar 

  119. M. Schirra et al., J. Appl. Phys. 101, 113509 (2007)

    Google Scholar 

  120. H.P. He et al., J. Appl. Phys. 102, 013511 (2007)

    Google Scholar 

  121. H.P. He et al., Appl. Phys. Lett. 90, 023104 (2007)

    Google Scholar 

  122. H. Zhou et al., Appl. Phys. Lett. 92, 132112 (2008)

    Google Scholar 

  123. E. McGlynn et al., Thin Solid Films 458, 330 (2004)

    Google Scholar 

  124. E. McGlynn et al., Nanotechnology 16, 2625 (2005)

    Google Scholar 

  125. S.F. Chichibu et al., J. Appl. Phys. 99, 093505 (2006)

    Google Scholar 

  126. A. Tsukazaki et al., Appl. Phys. Lett., 84, 3858 (2004)

    Google Scholar 

  127. H. Zhou et al., Appl. Phys. Lett., 91, 181112 (2007)

    Google Scholar 

  128. G. Xiong et al., J.Phys. Condens. Matter 17, 7287 (2005)

    Google Scholar 

  129. C.J. Vesely, R.L. Hengehold, D. Langer, Phys. Rev. B 5, 2296 (1972)

    Google Scholar 

  130. L. Ley et al., Phys. Rev. B 9, 600 (1974)

    Google Scholar 

  131. J.L. Freeouf, Phys. Rev. B 7, 3810 (1973)

    Google Scholar 

  132. W. Ranke, Solid State Commun. 19, 685 (1976)

    Google Scholar 

  133. G. Zwicker, K. Jacobi, Solid State Commun. 54, 701 (1985)

    Google Scholar 

  134. K. Ozawa et al., Phys. Rev. B 68, 125417 (2003)

    Google Scholar 

  135. R. Schmidt-Grund et al., J. Korean Phys. Soc., 53, 88 (2008)

    Google Scholar 

  136. H. Zhou et al., Phys. Stat. Sol. A 204, 112 (2007)

    Google Scholar 

  137. M. Schumm et al., J. Phys. Conference Series 92 (2007) 012149

    Google Scholar 

  138. M. Schumm et al., New J. Phys. 10, 043004 (2008)

    Google Scholar 

  139. Sample by courtesy of Y.R. Ryu (MOXtronics, Columbia), see M.S. Han et al. J. Crystal Growth 303, 506 (2007), measurement by J. Fallert (University of Karlsruhe), private communication (2007)

    Google Scholar 

  140. M. Lorenz et al., Solid State Electron. 47, 2205 (2003)

    Google Scholar 

  141. T. Makino et al., Appl. Phys. Lett. 78, 1237 (2001)

    Google Scholar 

  142. F.K. Shan et al., J. Cryst. Growth 291, 328 (2006)

    Google Scholar 

  143. R. Schmidt-Grund et al., J. Appl. Phys. 99, 123701 (2006)

    Google Scholar 

  144. D.M. Roessler, W.C. Walker, Phys. Rev. 159, 733 (1967)

    Google Scholar 

  145. R. Schmidt et al., Appl. Phys. Lett. 82, 2260 (2003)

    Google Scholar 

  146. S. Shigemori et al., Jpn. J. Appl. Phys. 43, L1088 (2004)

    Google Scholar 

  147. L.M. Kukreja, S. Barik, P. Misra, J. Cryst. Growth 268, 531 (2004)

    Google Scholar 

  148. S. Sadofev et al., Appl. Phys. Lett. 89, 201907 (2006)

    Google Scholar 

  149. S. Sadofev et al., Appl. Phys. Lett. 91, 201923 (2007)

    Google Scholar 

  150. A. Sarkar et al., Thin Solid Films 204, 255 (1991)

    Google Scholar 

  151. S. Monticone, R. Tufeu, A.V. Kanaev, J. Phys. Chem. B 102, 2854 (1998)

    Google Scholar 

  152. I. Takeuchi, J. Appl. Phys. 94, 7336 (2003)

    Google Scholar 

  153. T. Takagi et al., Jpn. J. Appl. Phys. 42, L401 (2003)

    Google Scholar 

  154. J. Chen et al., J. Phys.:Condens. Matter. 15, L475 (2003)

    Google Scholar 

  155. D.S. Chemla et al., IEEE J. Quantum Electron. 24, 1664 (1988)

    Google Scholar 

  156. I. Bar- Joseph, Phys. Rev. Lett. 59, 1357 (1987)

    Google Scholar 

  157. V.M. Agranovich, A.A. Maradudin, eds., Modern Problems in Condensed Matter Sciences (North Holland, Amsterdam)

    Google Scholar 

  158. V.M. Agranovich, D.L. Mills eds., Surface Polaritons, Vol. 1 of [157] (1982)

    Google Scholar 

  159. V.M. Agranovich, R. Landon, eds., Surface Excitations, Vol. 9 of [157] (1984)

    Google Scholar 

  160. J. Lagois, B. Fischer, Adv. Solid State Phys. 18, 197 (1978)

    Google Scholar 

  161. J. Lagois, B. Fischer, Solid State Commun. 18, 1519 (1976)

    Google Scholar 

  162. J. Lagois, B. Fischer, Phys. Rev. Lett. 36, 680 (1976)

    Google Scholar 

  163. F. DeMartini et al., Phys. Rev. Lett., 38, 1223 (1977)

    Google Scholar 

  164. M. Fukui, V.C-Y. So, G.I. Stegeman, Phys. Rev. Solid State Commun. 30, 683; (1979)

    Google Scholar 

  165. M. Fukui, V.C-Y. So, G.I. Stegeman, Phys. Rev. B 22, 1010 (1980)

    Google Scholar 

  166. I. Hirabayashi, Y. Tokura, T. Koda, J. Phys. Soc. Jpn. 51, 2934 (1982)

    Google Scholar 

  167. M. Fukui, A. Kamada, O. Tada, J. Phys. Soc. Japan 53, 1185 (1984)

    Google Scholar 

  168. J. Cui et al., Appl. Phys. Lett. 89, 051108 (2006)

    Google Scholar 

  169. A.V. Thompson et al., Appl. Phys. Lett. 91, 201921 (2007)

    Google Scholar 

  170. I.A. Buyanova et al., Appl. Phys. Lett. 92, 261912 (2008)

    Google Scholar 

  171. T. Makino et al., Appl. Phys. Lett. 77, 975 (2000)

    Google Scholar 

  172. T. Makino et al., Semicond. Sci.Technol. 20, S78 (2005)

    Google Scholar 

  173. X.Q. Gu et al., Appl. Phys. Lett. 91, 022103 (2007)

    Google Scholar 

  174. H.D. Sun et al., J. Appl. Phys. 91, 1993 (2002)

    Google Scholar 

  175. S. Kalusniak et al., Phys. Rev. B 77, 113312 (2008)

    Google Scholar 

  176. K. Koike et al., Jpn. J Appl. Phys. 43, L1372 (2004)

    Google Scholar 

  177. C. Morhain et al., Phys. Rev. B 72, 241305 (2005)

    Google Scholar 

  178. T. Makino et al., Appl. Phys. Lett. 93, 121907 (2008)

    Google Scholar 

  179. A. Ohtomo et al., Appl. Phys. Lett. 75, 980 (1999)

    Google Scholar 

  180. G. Coli, K.K. Bajaj, Appl. Phys. Lett. 78, 2861 (2001)

    Google Scholar 

  181. T. Makino et al., Appl. Phys. Lett. 78, 1979 (2001)

    Google Scholar 

  182. H.D. Sun et al., Appl. Phys. Lett. 78, 2464 (2001)

    Google Scholar 

  183. W.I. Park et al., Adv. Mat. 15, 526 (2003)

    Google Scholar 

  184. Xu Tian-Ning et al. Chin. Phys. Lett. 20, 1829 (2003)

    Google Scholar 

  185. Th. Gruber et al., Appl. Phys. Lett. 84, 5359 (2004)

    Google Scholar 

  186. B. Bhattacharya, R.R. Das, R.S. Katiyar, Thin Solid Films, 447–448, 564 (2004)

    Google Scholar 

  187. B.P. Zhang et al., Appl. Phys. Lett. 86, 032105 (2005)

    Google Scholar 

  188. Y.M. Lu et al., J. Cryst. Growth, 278, 299 (2005)

    Google Scholar 

  189. C. Morhain et al., Superlattice. Microstructure 38, 455 (2005)

    Google Scholar 

  190. T. Makino et al., J. Appl. Phys. 99, 066108 (2006)

    Google Scholar 

  191. P. Misra et al., Appl. Phys. Lett. 89, 161912 (2006)

    Google Scholar 

  192. P. Misra, T.K. Sharma, L.M. Kukreja Superlattice. Microstructure. 42, 212 (2007)

    Google Scholar 

  193. H. Shibata et al., Appl. Phys. Lett. 90, 124104 (2007)

    Google Scholar 

  194. M. Al-Suleiman et al., Appl. Phys. Lett. 91, 081911 (2007)

    Google Scholar 

  195. S. Heitsch et al., J. Appl. Phys. 101, 083521 (2007)

    Google Scholar 

  196. S. Heitsch et al., Appl. Phys. A 88, 99 (2007)

    Google Scholar 

  197. R. Hauschild et al., Phys. Stat. Sol. B 243, 853 (2006)

    Google Scholar 

  198. R. Hauschild et al., Phys. Stat. Sol. C 3, 3557 (2006)

    Google Scholar 

  199. R. Hauschild, H. Kalt, Appl. Phys. Lett. 89, 123107 (2006)

    Google Scholar 

  200. T. Voss et al., Nano Lett. 7, 3675 (2007)

    Google Scholar 

  201. D. Stichtenoth et al., Nanotechnology 18, 435701 (2007)

    Google Scholar 

  202. T. Nobis et al., Phys. Rev. Lett. 93, 103903–3 (2004)

    Google Scholar 

  203. L. Sun et al., Phys. Rev. Lett. 100, 156403 (2008)

    Google Scholar 

  204. Y. Gu et al., Appl. Phys. Lett. 85, 3833 (2004)

    Google Scholar 

  205. C-W. Chen et al., Appl. Phys. Lett. 88, 241905 (2006)

    Google Scholar 

  206. J-P. Richters et al., Appl. Phys. Lett. 92, 011103 (2008)

    Google Scholar 

  207. E-S. Jang et al., Appl. Phys. Lett. 88, 023102 (2006)

    Google Scholar 

  208. Won Il Park et al., Adv. Mater. 15, 526 (2003)

    Google Scholar 

  209. T. Yatsui et al., Appl. Phys. Lett. 85, 727 (2004)

    Google Scholar 

  210. A. Bakin et al., Phys. Stat. Sol. C 4, 158 (2007)

    Google Scholar 

  211. C. Czekalla et al., Nanotechnology 19, 115202 (2008)

    Google Scholar 

  212. L. Spanhel, J. Sol-Gel Technol. 39, 7 (2006)

    Google Scholar 

  213. J. Fallert, J. Appl. Phys. 101, 073506 (2007)

    Google Scholar 

  214. M. Schirra et al., Physica B 401–402, 362 (2007)

    Google Scholar 

  215. M. Schirra et al., Phys. Rev. B 77, 125215 (2008)

    Google Scholar 

  216. J.G. Lu, Appl. Phys. Lett. 89, 023122 (2006)

    Google Scholar 

  217. D.W. Bahnemann, C. Kormann, M.R. Hoffmann, J. Phys. Chem. 91, 3789 (1987)

    Google Scholar 

  218. Y. Kayanuma, Phys. Rev. B 38, 9797 (1988)

    Google Scholar 

  219. C.M. Mo et al., J. Appl. Phys. 83, 4389 (1998)

    Google Scholar 

  220. C.L. Yang et al., J. Appl. Phys. 90, 4489 (2001)

    Google Scholar 

  221. A. van Dijken et al., J. Lumin. 87–89, 454 (2000)

    Google Scholar 

  222. T. Yatsui et al., Appl. Phys. Lett. 80, 1444 (2002)

    Google Scholar 

  223. A. Wood et al., Aust. J. Chem. 56, 1051 (2003)

    Google Scholar 

  224. S.D. Kshirsagar, V.V. Nikesh, S. Mahamuni, Appl. Phys. Lett. 89, 053120 (2006)

    Google Scholar 

  225. Y. Yang et al., J. Phys. Condens. Matter, 16, 7277 (2004)

    Google Scholar 

  226. Y. Yang et al., J. Phys. Chem. B, 110, 846 (2006)

    Google Scholar 

  227. V.A. Fonoberov, A.A. Balandin, Appl. Phys. Lett. 85, 5971 (2004)

    Google Scholar 

  228. Y.J. Zheng et al., Appl. Phys. Lett. 90, 012111 (2007)

    Google Scholar 

  229. M. Zamfirescu et al., Phys. Rev. 65, 161205 (2002)

    Google Scholar 

  230. R. Schmidt-Grund et al., Appl. Phys. B 93, 331 (2008)

    Google Scholar 

  231. L.K. van Vugt et al., Phys. Rev. Lett. 97, 147401 (2006)

    Google Scholar 

  232. R. Shimada et al., SPIE Proc. 6895, 689501–1 (2008)

    Google Scholar 

  233. R. Shimada et al. Appl. Phys. Lett. 92, 011127 (2008)

    Google Scholar 

  234. F. Reveret et al., Opt. Mater. 31, 505 (2009)

    Google Scholar 

  235. F. Medard et al., Phys. Rev. B 79, 125302 (2009)

    Google Scholar 

  236. Ch. Sturm et al., New J. Phys. 11, 073044 (2009)

    Google Scholar 

  237. Zanghai Chen et al., 14th Intern. Conf. on II-VI Compounds, St Petersburg Sept. (2009), Fr 2–1 to be published in phys. stat. sol. C

    Google Scholar 

  238. A. Trichet et al., ibid. Fr 2–3

    Google Scholar 

  239. A.N. Gruzintsev et al., ibid. Fr 2–4

    Google Scholar 

  240. C. Klingshirn et al., in 14th Intern. Conf. on II-VI Compounds, St Petersburg Sept. (2009), Su 1–1, to be published in phys. stat. sol. C

    Google Scholar 

  241. T. Thomay et al., Opt. Exp. 16, 9791 (2008)

    Google Scholar 

  242. M. Lorenz et al., Phys. Stat. Sol. B 247, 1265 (2010)

    Google Scholar 

  243. C.P. Dietrich et al., New J. of Phys. 12, 033030 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Klingshirn .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klingshirn, C. (2010). Intrinsic Linear Optical Properties Close to the Fundamental Absorption Edge. In: Zinc Oxide. Springer Series in Materials Science, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10577-7_6

Download citation

Publish with us

Policies and ethics