Skip to main content

Growth

  • Chapter
  • First Online:
Zinc Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 120))

Abstract

This chapter is devoted to the growth of ZnO. It starts with various techniques to grow bulk samples and presents in some detail the growth of epitaxial layers by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). The last section is devoted to the growth of nanorods. Some properties of the resulting samples are also presented. If a comparison between GaN and ZnO is made, very often the huge variety of different growth techniques available to fabricate ZnO is said to be an advantage of this material system. Indeed, growth techniques range from low cost wet chemical growth at almost room temperature to high quality MOCVD growth at temperatures above 1, 000C. In most cases, there is a very strong tendency of c-axis oriented growth, with a much higher growth rate in c-direction as compared to other crystal directions. This often leads to columnar structures, even at relatively low temperatures. However, it is, in general, not straight forward to fabricate smooth ZnO thin films with flat surfaces. Another advantage of a potential ZnO technology is said to be the possibility to grow thin films homoepitaxially on ZnO substrates. ZnO substrates are mostly fabricated by vapor phase transport (VPT) or hydrothermal growth. These techniques are enabling high volume manufacturing at reasonable cost, at least in principle. The availability of homoepitaxial substrates should be beneficial to the development of ZnO technology and devices and is in contrast to the situation of GaN. However, even though a number of companies are developing ZnO substrates, only recently good quality substrates have been demonstrated. However, these substrates are not yet widely available. Still, the situation concerning ZnO substrates seems to be far from low-cost, high-volume production. The fabrication of dense, single crystal thin films is, in general, surprisingly difficult, even when ZnO is grown on a ZnO substrate. However, molecular beam epitaxy (MBE) delivers high quality ZnMgO–ZnO quantum well structures. Other thin film techniques such as PLD or MOCVD are also widely used. The main problem at present is to consistently achieve reliable p-type doping. For this topic, see also Chap. 5. In the past years, there have been numerous publications on p-type doping of ZnO, as well as ZnO p–n junctions and light emitting diodes (LEDs). However, a lot of these reports are in one way or the other inconsistent or at least incomplete. It is quite clear from optical data that once a reliable hole injection can be achieved, high brightness ZnO LEDs should be possible. In contrast to that expectation, none of the LEDs reported so far shows efficient light emission, as would be expected from a reasonable quality ZnO-based LED. See also Chap. 13. As a matter of fact, there seems to be no generally accepted and reliable technique for p-type doping available at present. The reason for this is the unfavorable position of the band structure of ZnO relative to the vacuum level, with a very low lying valence band. See also Fig. 5.1. This makes the incorporation of electrically active acceptors difficult. Another difficulty is the huge defect density in ZnO. There are many indications that defects play a major role in transport and doping. In order to solve the doping problem, it is generally accepted that the quality of the ZnO material grown by the various techniques needs to be improved. Therefore, the optimization of ZnO epitaxy is thought to play a key role in the further development of this material system. Besides being used as an active material in optoelectronic devices, ZnO plays a major role as transparent contact material in thin film solar cells. Polycrystalline, heavily n-type doped ZnO is used for this, combining a high electrical conductivity with a good optical transparency. In this case, ZnO thin films are fabricated by large area growth techniques such as sputtering. For this and other applications, see also Chap. 13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Pecz, A. Elshaer, A. Bakin, A. Che Mofor, A. Waag, J. Stoemenos, J. Appl. Phys. 100, 103506 (2006)

    Article  Google Scholar 

  2. Tadashi Takahashi, Atsuko Ebina, Akira Kamiyama, Jpn. J. Appl. Phys. 5, 560 (1966)

    Article  Google Scholar 

  3. Michael H. Huang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, Peidong Yang, Adv. Mater. 13, 113 (2001)

    Article  Google Scholar 

  4. A. Che Mofor, A. Bakin, B. Postels, M. Suleiman, A. Elshaer, A. Waag, Thin Solid Films 516, 1401 (2008)

    Article  Google Scholar 

  5. R. Helbig, J. Cryst. Growth 15, 25 (1972)

    Article  Google Scholar 

  6. H. Schneck, R. Helbig Thin Solid Films, 27, 101 (1975)

    Article  Google Scholar 

  7. R. Tena-Zaera, M.C. Martínez-Tomás, S. Hassani, R. Triboulet, V. Muñoz-Sanjosé, J. Cryst. Growth 270, 711 (2004)

    Article  Google Scholar 

  8. V. Muñoz-Sanjosé, R. Tena-Zaera, C. Martínez-Tomás, J. Zúñiga-Pérez, S. Hassani, R. Triboulet. Phys. Stat. Solidi. C2, 1106 (2005)

    Article  Google Scholar 

  9. C. Klingshirn, Phys. Stat. Sol., b 244, 3027 (2007)

    Article  Google Scholar 

  10. D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, X. Akira Yoshikawa, T. Fukuda, Prog. Cryst. Growth Charact. Mater. 52, 280 (2006)

    Article  Google Scholar 

  11. R.A. Laudise, A.A. Ballman, J. Phys. Chem. 64, 688 (1960)

    Article  Google Scholar 

  12. K. Oka, H. Shibata, S. Kashiwaya, J. Cryst. Growth 237, 509 (2002)

    Article  Google Scholar 

  13. D.C. Reynolds et al., J. Appl. Phys. 95, 4802 (2004)

    Article  Google Scholar 

  14. J.W. Nielsen, E.F. Dearborn, J. Phys. Chem. 64, 1762 (1960)

    Article  Google Scholar 

  15. J. Nause, B. Nemeth, Semicond. Science an Technol. 20, S45 (2005)

    Article  Google Scholar 

  16. D. Schulz, S. Ganshow, D. Klimm, M. Neubert, M. Rossberg, M. Schmidbauer, R. Fornari, J. Cryst. Growth 296, 27 (2006)

    Article  Google Scholar 

  17. Byrappa, in Handbook of Crystal Growth, ed. by D.T. Hurle. Bulk Crystal Growth, Basic Techniques, 2a (North-Holland, Amsterdam, 1994)

    Google Scholar 

  18. J. Bläsing, A. Krost, J. Hertkorn, F. Scholz, L. Kirste, A. Chuvilin, U. Kaiser, J. Appl. Phys. 105, 033504 (2009)

    Article  Google Scholar 

  19. D. Zwingel, J. Luminesc.5, 385 (1972)

    Article  Google Scholar 

  20. D. Zwingel, F. Gärtner, Sol. Stat. Commun. 14, 45 (1974)

    Article  Google Scholar 

  21. E. Ohshima et al., J. Cryst. Growth 260, 166 (2004)

    Article  Google Scholar 

  22. K. Maeda et al., Semicon. Sci. Technol. 20, S49 (2005)

    Article  Google Scholar 

  23. E.P. Warekois, M.C. Lavine, A.N. Mariano, H.C. Gatos, J. Appl. Phys., 33, 690 (1962)

    Article  Google Scholar 

  24. A.N. Hanneman, R.E. Mariano, J. Appl. Phys. 34, 384 (1963)

    Article  Google Scholar 

  25. Xing Gu, Sh. Sabuktagin, Ali Teke, D. Johnstone, H. Morkoç, B. Nemeth, J. Nause, J. Mater. Sci. Mater. Electron. 15, 373 (2004)

    Article  Google Scholar 

  26. S. Graubner, C. Neumann, N. Volbers, B.K. Meyer, J. Bläsing, A. Krost, Appl. Phys. Lett. 90, 042103 (2007)

    Article  Google Scholar 

  27. G.A. Wolff, B.N. Das, F.H. Cocks, J. Appl. Crystallogr., 4, 379 (1971)

    Article  Google Scholar 

  28. V. Petukhov, A. Bakin, A. Elshaer, A. Che Mofor, A. Waag, Electrochem. Solid State Lett., 10, H357 (2007)

    Article  Google Scholar 

  29. E.S. Hellman, C.D. Brandle, L.F. Schneemeyer, D. Wiesmann, I. Brener, T. Siegrist, G.W. Berkstresser, D.N.E. Buchanan, E.H. Hartford, Internet J. Nitride Semicond. Res. 1, 1 (1996)

    Google Scholar 

  30. A. Ohtomo, A. Tsukazaki, Semicond. Sci. Technol. 20, S1 (2005)

    Article  Google Scholar 

  31. Th. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, F. Bertram, D. Forster, J. Christen, M. Schreck, Appl. Phys. Lett. 83, 3290 (2003)

    Article  Google Scholar 

  32. Ishihara Junji et al., IEIC Tech. Rep. 103, 69 (2003)

    Google Scholar 

  33. R. Kling, C. Kirchner, Th. Gruber, F. Reuss, A. Waag, Nanotechnology 15, 1043 (2004)

    Article  Google Scholar 

  34. B.P. Zhang, K. Wakatsukia, N.T. Binha, N. Usamic, Y. Segawa, Thin Solid Films 449, 12 (2004)

    Article  Google Scholar 

  35. B. Hahn, G. Heindel, E. Pschorr-Schoberer, W. Gebhardt, Semicond. Sci. Technol. 13, 788 (1998)

    Article  Google Scholar 

  36. C. Kirchner, Th. Gruber, F. Reuss, K. Thonke, A. Waag, Ch. Giessen, M. Heuken, J. Cryst. Growth 248, 20 (2003)

    Article  Google Scholar 

  37. A. Waag, Th. Gruber, K. Thonke, R. Sauer, R. Kling, C. Kirchner, H. Ress, J. Alloys Compd. 371, 77 (2004)

    Article  Google Scholar 

  38. Y. Kashiwaba, K. Haga, H. Watanabe, B.P. Zhang, Y. Segawa, K. Wakatsuki, Physica Status Solidi B, Vol. B, 229, 921 (2002)

    Google Scholar 

  39. Th. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, Appl. Phys. Lett. 84, 5359 (2004)

    Article  Google Scholar 

  40. Th. Gruber, Dissertation, Universität Ulm, 2003

    Google Scholar 

  41. Seung Yeop Myong, Seung Jae Baik, Chang Hyun Lee, Woo Young Cho, Koeng Su Lim, Jpn. J. Appl. Phys. 36, L1078 (1997)

    Article  Google Scholar 

  42. A. Behrends, A. Bakin, A. Waag, private communication

    Google Scholar 

  43. Th. Gruber, Ch. Kirchner, F. Reuss, R. Kling, A. Waag, unpublished

    Google Scholar 

  44. A. Elshaer, PhD Thesis, TU Braunschweig, Germany (2008)

    Google Scholar 

  45. A. Elshaer, A. Bakin, A. Che Mofor, J. Bläsing, A. Krost, J. Stoimenos, B. Pécz, M. Kreye, M. Heuken, A. Waag, Phys. Stat. Sol. (b) 243, 768 (2006)

    Article  Google Scholar 

  46. A. Bakin, A. Elshaer, A. Che Mofor, M. Kreye, A. Waag, F. Bertram, J. Christen, M. Heuken, J. Stoimenos, J. Cryst. Growth 287, 7 (2006)

    Article  Google Scholar 

  47. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, Sh.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat Mater 4, 42 (2004)

    Article  Google Scholar 

  48. A. Ohtomo et al., Appl. Phys. Lett. 75, 2635 (1999)

    Article  Google Scholar 

  49. P. Fons, K. Iwata, S. Niki, A. Yamada, K. Matsubara, J. Cryst. Growth 201–202, 627 (1999)

    Article  Google Scholar 

  50. Y. Chen, D.M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z.-Q. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)

    Article  Google Scholar 

  51. A. Elshaer, A. Bakin, A. Che Mofor, J. Bläsing, A. Krost, Phys. Stat. Sol. (b) 4, 768 (2006)

    Article  Google Scholar 

  52. P.F. Palmstrøm, C.J. Miceli, Phys. Rev. B 51, 5506 (1995)

    Article  Google Scholar 

  53. T. Metzger, R. Höpler, E. Born, S. Christiansen, M. Albrecht, H.P. Strunk, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, Physica Status Solidi A 162, 529 (1997)

    Article  Google Scholar 

  54. A. Boulle, R. Guinebretière, A. Dauger, J. Appl. Phys. 97, 073503 (2005)

    Article  Google Scholar 

  55. V.M. Kaganer, R. Köhler, M. Schmidbauer, R. Opitz, B. Jenichen, Phys. Rev. B 55, 1793 (1997)

    Article  Google Scholar 

  56. A. Elshaer, A. Bakin, A. Che Mofor, J. Stoimenos, B. Pecz, A. Waag, Superlattices Microstruct 42, 158 (2007)

    Article  Google Scholar 

  57. A. Elshaer, Dissertation, TU Braunschweig (2008)

    Google Scholar 

  58. A. Ohtomo, R. Shirokil, I. Ohkubo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett. 75, 4088 (1999)

    Article  Google Scholar 

  59. A. Elshaer, A. Che Mofor, A. Bakin, M. Kreye, A. Waag, Superlattices Microstruct 38, 265 (2005)

    Article  Google Scholar 

  60. A. Bakin, A. Elshaer, A. Che Mofor, M. Kreye, A. Waag, F. Bertram, J. Christen, M. Heuken, J. Stoimenos, J. Cryst. Growth 287, 7 (2006)

    Article  Google Scholar 

  61. A. Elshaer, A. Bakin, M. Al-Suleiman, S. Ivanov, A. Che Mofor, A. Waag, Superlattices Microstruct 42, 129 (2007)

    Article  Google Scholar 

  62. M. Al-Suleiman, A. El-Shaer, A. Bakin, H.-H. Wehmann, A. Waag, Appl. Phys. Lett., 91, 081911 (2007)

    Article  Google Scholar 

  63. H. Wenisch, V. Kirchner, S.K. Hong, Y.F. Chen, H.J. Ko, T. Yao, J. Cryst. Growth, 227, 944 (2001)

    Article  Google Scholar 

  64. M.W. Cho, C. Harada, H. Suzuki, T. Minegishia, T. Yao, H. Ko, K. Maeda, I. Nikura, Superlattices Microstruct 38, 349 (2005)

    Article  Google Scholar 

  65. C. Neumann, S. Lautenschläger, S. Graubner, J. Sann, N. Volbers, B.K. Meyer, J. Bläsing, A. Krost, F. Bertram, J. Christen, Physica Status Solidi (b) 244, 1451 (2007)

    Article  Google Scholar 

  66. K. Huaizhe Xu, M. Ohtani, X. Yamao, H. Ohno, Appl. Phys. Lett. 89, 071918 (2006)

    Article  Google Scholar 

  67. D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, S.F. Chichibu, J. Appl. Phys. 103, 063502 (2008)

    Article  Google Scholar 

  68. S. Sadofev, P. Schäfer, Y.-H. Fan, S. Blumstengel, F. Henneberger, D. Schulz, D. Klimm, Appl. Phys. Lett. 91(29), 201923 (2007)

    Article  Google Scholar 

  69. D.J. Rogers, D.C. Look, F. Hosseini Téhérani, K. Minder, M. Razeghi, A. Largeteau, G. Demazeau, Physica Status Solidi (c) 5, 3084 (2008)

    Article  Google Scholar 

  70. S. Heitsch, G. Zimmermann, J. Lenzner, H. Hochmuth, G. Benndorf, M. Lorenz, M. Grundmann, AIP Conference Proceedings, Physics of Semiconductors, vol. 893–1, 2007, p. 409

    Google Scholar 

  71. B.Q. Cao, M. Lorenz, A. Rahm, H. von Wenckstern, C. Czekalla, J. Lenzner, G. Benndorf, M. Grundmann, Nanotechnology 18, 455707 (2007)

    Article  Google Scholar 

  72. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13, 113 (2001)

    Article  Google Scholar 

  73. H. Zhou et al., Appl. Phys. Lett. 92, 132112 (2008)

    Article  Google Scholar 

  74. H. Zhou et al., J. Korean Phys. Soc. 53, 2893 (2008)

    Article  Google Scholar 

  75. R. Hauschild et al., Phys. Stat. Sol. (b) 243, 853 (2006)

    Article  Google Scholar 

  76. A. Che Mofor, A. Bakin, A. Elshaer, D. Fuhrmann, F. Bertram, A. Hangleiter, J. Christen, A. Waag, Phys. Stat. Sol. (c) 3, 1046 (2006)

    Article  Google Scholar 

  77. Chinkyo Kim, Won Il Park, Gyu-Chul Yi, Miyoung Kim, Appl. Phys. Lett. 89, 113106 (2006)

    Article  Google Scholar 

  78. C. Czekalla, J. Guinard, C. Hanisch, B.Q. Cao, E.M. Kaidashev, N. Boukos, A. Travlos, J. Renard, B. Gayral, D. Le Si Dang, M. Lorenz, M. Grundmann, Nanotechnology 19, 115202 (2008)

    Article  Google Scholar 

  79. Cao et al., Nanotechnology 20, 305701 (2009)

    Article  Google Scholar 

  80. A. Bakin, A. Elshaer, A. Che Mofor, M. Al-Suleiman, E. Schlenker, A. Waag, Physica Status Solidi (c) 4, 158 (2007)

    Article  Google Scholar 

  81. W.I. Park, D.H. Kim, S.-W. Jung, Gyu-Chul Yia, Appl. Phys. Lett. 80, 4232 (2002)

    Article  Google Scholar 

  82. Won Il Park, Gyu-Chul Yi, Miyoung Kim, Stephen J. Pennycook, Adv. Mater. 15, 526 (2003)

    Article  Google Scholar 

  83. E. Schlenker, A. Bakin, T. Weimann, P. Hinze, D.H. Weber, A. Gölzhäuser, H.-H. Wehmann, A. Waag, Nanotechnology 19, 365707 (2008)

    Article  Google Scholar 

  84. D. Weissenberger et al., Appl. Phys. Lett. 94, 042107 (2009)

    Article  Google Scholar 

  85. D.H. Weber, A. Beyer, B. Völkel, A. Gölzhäuser, E. Schlenker, A. Bakin, A. Waag, Appl. Phys. Lett. 91, 253126 (2007)

    Article  Google Scholar 

  86. Jae Young Park, Dong Eon Song, Sang Sub Kim, Nanotechnology 19, 105503 (2008)

    Article  Google Scholar 

  87. B.S. Kang, F. Ren, Y.W. Heo, L.C. Tien, D.P. Norton, S.J. Pearton, Appl. Phys. Lett. 86, 112105 (2005)

    Article  Google Scholar 

  88. L. Wischmeier, T. Voss, I. Rückmann, J. Gutowski, Nanotechnology, 19, 135705 (2008)

    Article  Google Scholar 

  89. J.-P. Richters, T. Voss, D.S. Kim, R. Scholz, M. Zacharias, Nanotechnology, 19, 305202 (2008)

    Article  Google Scholar 

  90. J. Fallert, R. Hauschild, F. Stelzl, A. Urban, M. Wissinger, Huijuan Zhou, C. Klingshirn, H. Kalt, J. Appl. Phys. 101, 073506 (2007)

    Article  Google Scholar 

  91. J. Grabowska, A. Meaney, K.K. Nanda, J.-P. Mosnier, M.O. Henry, J.-R. Duclère, E. Mc Glynn, Phys. Rev. B 71, 115439 (2005)

    Article  Google Scholar 

  92. M. Al-Suleiman, A. Che Mofor, A. Elshaer, A. Bakin, H.-H. Wehmann, A. Waag, Appl. Phys. Lett. 89, 231911 (2006)

    Article  Google Scholar 

  93. M. Al-Suleiman, A. Bakin, A. Waag et al. J. Appl. Phys. 106, 063111 (2009)

    Article  Google Scholar 

  94. Z.L. Wang, J. Phys. Condens. Matter. 16, R829 (2004)

    Article  Google Scholar 

  95. Z. Fan, J.G. Lu, J. Nanosci. Nanotechnol. 5, 1561 (2005)

    Article  Google Scholar 

  96. A. Waag, Th. Gruber, Ch. Kirchner, D. Klarer, K. Thonke, R. Sauer, F. Forster, F. Bertram, J. Christen, Adv. Solid State Phys. 42, 81 (2002)

    Article  Google Scholar 

  97. E. Schlenker, A. Bakin, H.-H. Wehmann, A. Waag, Th. Weimann, P. Hinze, A. Melnikov, A.D. Wieck, J. Korean Phys. Soc. 53, 119 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Waag .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waag, A. (2010). Growth. In: Zinc Oxide. Springer Series in Materials Science, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10577-7_3

Download citation

Publish with us

Policies and ethics