Skip to main content
Book cover

Zinc Oxide pp 307–323Cite as

Dynamic Processes

  • Chapter
  • First Online:
  • 2488 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 120))

Abstract

The purpose of this chapter is to present the results of the dynamics of exciton (polariton)s or more generally of electron–hole pairs. For a recent review of this topic concentrating on quantum wells, see Davies and Jagadish (Laser Photon. Rev. 3(1), 1(2008)). We neither consider the dynamics of carriers, for example, their relaxation time entering in Hall mobility or electrical conductivity, nor the dynamics of phonons or spins, respectively. We give here only a very small selection of references to these topics (Baxter and Schmuttenmaer, J. Phys. Chem. B, 110:25229, 2006; Queiroz et al. Superlattice Microstruct. 42:270, 2007; Niehaus and Schwarz, Superlattice Microstruct. 42:299, 2007; Lee et al., J. Appl. Phys. 93:4939, 2003; A. K Azad, J. Han, W. Zhang, Appl. Phys. Lett. 88:021103, 2006; Janssen et al., QELS 2008 IEEE 2; D. Lagarde et al., Phys. Stat. Sol. C 4:472, 2007; S. Gosh et al., Appl. Phys. Lett. 86:232507, 2005; W. K. Liu et al. Phys. Rev. Lett. 98:186804, 2007). The main characteristic time constants relevant to optical properties close to the fundamental absorption edge are the dephasing time T 2, (i.e. the time after which the polarization amplitude of the optically excited electron–hole pair loses the coherence with the driving light field), the intra band or inter sub band relaxation times T 3 (i.e. the time it takes for the electron–hole pairs to relax from their initial state of excitation to a certain other state e.g. to a thermal distribution with a temperature equal to or possibly still above lattice temperature) and finally the lifetime T 1 (i.e. the time until the electron–hole pairs recombine). The characteristic time constants T 2 and T 1 are also known as transverse and longitudinal relaxation times, respectively. Their inverses are the corresponding rate constants. T 2 is inversely proportional to the homogeneous width Γ, and T 1 includes both the radiative and the generally dominating non-radiative recombination (Hauser et al., Appl. Phys. Lett. 92:211105, 2008). For this point, recall Figs. 6.16 and 6.33. Since the polarisation amplitude is gone in any case after the recombination process, there is an upper limit for T 2 given by T 2 ≤ 2 T1. The factor of two comes from the fact that T 2 describes the decay of an amplitude and T 1 the decay of a population, which is proportional to the amplitude squared. Sometimes T 2 is subdivided in a term due to recombination described by T 1 and another called ‘pure dephasing’ called T 2 with the relation 1 ∕ T 2 = 1 ∕ 2 T 1 + 1 ∕ T2 . The quantity T 2 can considerably exceed 2 T 1. In the part on relaxation processes that is on processes contributing to T 3, we give also examples for the capture of excitons into bound, localized, or deep states. For more details on dynamics in semiconductors in general see for example, the (text-) books [Klingshirn, Semiconductor Optics, 3rd edn. (Springer, Berlin, 2006); Haug and Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th edn. (World Scientific, Singapore, 2004); Haug and Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid State Sciences vol. 123 (Springer, Berlin, 1996); J. Shah, Ultrafast Spectroscopy of Semiconductors and of Semiconductor Nanostructures, Springer Series in Solid State Sciences vol. 115 (Springer, Berlin, 1996); Schafer and Wegener, Semiconductor Optics and Transport Phenomena (Springer, Berlin, 2002)]. We present selected data for free, bound and localized excitons, biexcitons and electron–hole pairs in an EHP and examples for bulk materials, epilayers, quantum wells, nano rods and nano crystals with the restriction that – to the knowledge of the author – data are not available for all these systems, density ranges and temperatures. Therefore, we subdivide the topic below only according to the three time constants T 2, T 3 and T 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Klingshirn, Semiconductor Optics, 3rd edn. (Springer, Heidelberg, 2006)

    Google Scholar 

  2. R. Hauschild et al., Phys. Stat. Sol. (c) 3, 976 (2006)

    Google Scholar 

  3. Y. Zhang, D.-J. Chen, C.-T. Lee, Appl. Phys. Lett. 91,161911 (2007)

    Google Scholar 

  4. E. Tomzig, R. Helbig, Sol. State Commun. 15, 1513 (1974)

    Google Scholar 

  5. E. Tomzig, R. Helbig, J. Lumin. 14, 403 (1976)

    Google Scholar 

  6. C. Solbrig, E. Mollwo, Sol. State Commun. 5, 625 (1967)

    Google Scholar 

  7. C. Solbrig, Z. Physik 211, 429 (1968)

    Google Scholar 

  8. H. Haug, S.W. Koch: Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th edn. (World Scientific, Singapore, 2004)

    Google Scholar 

  9. H. Haug, A.-P. Jauho, in Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid State Science, vol. 123 (Springer, Berlin, 1996)

    Google Scholar 

  10. J. Shah, in Ultrafast Spectroscopy of Semiconductors and of Semiconductor Nanostructures, Springer Series in Solid State Science, Vol. 115 (Springer, Berlin, 1996)

    Google Scholar 

  11. W. Schäfer, M. Wegener, Semiconductor Optics and Transport Phenomena (Springer, Berlin 2002)

    Google Scholar 

  12. L. Börnstein, New Series, Group III vol. 34 C1 Parts 1 and 2, C. Klingshirn ed., Springer, Heidelberg, Berlin (2001 and 2004)

    Google Scholar 

  13. W. Zhang et al., Appl. Phys. Lett., 75, 3321 (1999)

    Google Scholar 

  14. K. Hazu et al., J. Appl. Phys. 96, 1270 (2004)

    Google Scholar 

  15. S. Adachi et al., Semicod. Sci. Technol. 19, S276 (2004)

    Google Scholar 

  16. S. Adachi et al., Phys. Stat. Sol. (c) 2, 890 (2005)

    Google Scholar 

  17. T. Makino et al., Appl. Phys. Lett. 76, 3549 (2000)

    Google Scholar 

  18. C. Klingshirn, Phys. Stat. Sol. B 224, 3027 (2007)

    Google Scholar 

  19. C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007)

    Google Scholar 

  20. C. Klingshirn, Phys. Rev. B 75, 115203 (2007)

    Google Scholar 

  21. K. Hazu et al., J. Lumin. 112, 7 (2005)

    Google Scholar 

  22. K. Hazu, J. Appl. Phys. 95, 5498 (2004)

    Google Scholar 

  23. J.A. Davies et al., Appl. Phys. Lett., 89, 182109 (2006)

    Google Scholar 

  24. K. Hazu et al., Phys. Rev. B, 68, 033205 (2003)

    Google Scholar 

  25. C. Klingshirn, H. Haug, Phys. Rep. 70, 315 (1981)

    Google Scholar 

  26. A. Yamamoto et al., Appl. Phys. Lett. 75, 469 (1999)

    Google Scholar 

  27. A. Yamamoto et al., J. Crystal Growth 214/215, 308 (2000)

    Google Scholar 

  28. N. Arai et al., J. Luminesc. 119–120, 346 (2006)

    Google Scholar 

  29. J. Takeda et al., Jpn. J. Appl. Phys. 45(9A), 6961 (2006)

    Google Scholar 

  30. R. Hauschild et al., Phys. Stat. Sol. (c) 3, 980 (2006)

    Google Scholar 

  31. C. Klingshirn et al., Adv. Solid State Phys. 45, 261 (2005)

    Google Scholar 

  32. C. Klingshirn et al., Superlattice Microstruct. 38, 209 (2005)

    Google Scholar 

  33. R. Heitz et al., Mat. Sci. Forum 83–87, 1241 (1992)

    Google Scholar 

  34. F.-Y. Jen et al., Appl. Phys. Lett. 87, 072103 (2005)

    Google Scholar 

  35. A. Yamamoto et al., Phys. Stat. Sol. B 229, 871 (2002)

    Google Scholar 

  36. H.J. Ko et al., Appl. Phys. Lett. 77, 537 (2000)

    Google Scholar 

  37. M. Schilling, R. Helbig, G. Pensl, J. Luminesc. 33, 201 (1985)

    Google Scholar 

  38. H. Wolf et al., Mat. Sci. Forum 10–12, 863 (1986)

    Google Scholar 

  39. B.K. Meyer et al., Phys. Stat. Sol. (b) 241, 231 (2004)

    Google Scholar 

  40. W.R.L. Lambrecht et al., Phys. Rev. B 65, 075207 (2002)

    Google Scholar 

  41. L. Wischmeier et al., Phys. Rev. B 74, 195333 (2006)

    Google Scholar 

  42. L. Wischmeier et al., Nanotechnology 19, 135705 (2008)

    Google Scholar 

  43. T. Voss, L. Wischmeier, J. Nanosci. Nanotechnol. 8, 228 (2008)

    Google Scholar 

  44. Y.M. Lu et al., J. Crystal Growth 278, 299 (2005)

    Google Scholar 

  45. J.J. Cavaleri et al. J. Chem. Phys. 103, 5378 (1995)

    Google Scholar 

  46. W.M. Kwok et al., Appl. Phys. Lett. 87, 093108 (2005)

    Google Scholar 

  47. J.K. Song et al., J. Phys. Chem. C 112, 1679 (2008)

    Google Scholar 

  48. K. Takagi et al., Nonlin. Opt. 29, 427 (2002)

    Google Scholar 

  49. J. Takeda, Nonlin. Opt. 29, 521 (2002)

    Google Scholar 

  50. J. Takeda et al., Phys. Stat. Sol. C 1, 678 (2002)

    Google Scholar 

  51. Y. Toshine et al., Phys. Status Solidi C 1, 839 (2004)

    Google Scholar 

  52. J.C. Johnson et al., Nano Lett. 4, 197 (2004)

    Google Scholar 

  53. C.-K. Sun et al., Appl. Phys. Lett. 87, 023106 (2005)

    Google Scholar 

  54. R. Hauschild et al., Phys. Stat. Sol. C 3, 2514 (2006)

    Google Scholar 

  55. H. Ichida et al., J. Luminesc. 128, 1059 (2008)

    Google Scholar 

  56. R. Huber et al., Nature, 414, 286 (2001)

    Google Scholar 

  57. R. Huber et al., Phys. Stat. Sol. B 234, 207 (2002)

    Google Scholar 

  58. T. Skettrup, L.R. Lidholt, Sol. State Commun. 6, 589 (1968)

    Google Scholar 

  59. S. Lettieri et al., Nanotechnology 20, 175706 (2009)

    Google Scholar 

  60. C. Klingshirn, Z. Physik 248, 433 (1971)

    Google Scholar 

  61. J. Collet, T. Amand, Phys. Rev. B 33, 4129 (1986)

    Google Scholar 

  62. V.V. Travnikov, A. Freiberg, S.F. Savikhin, J. Luminesc. 47, 107 (1990)

    Google Scholar 

  63. R. Heitz et al., Mat. Sci. Forum 83–87, 1241 (1992)

    Google Scholar 

  64. S. Savikhin, A. Freiberg, J. Luminesc. 55, 1 (1993)

    Google Scholar 

  65. J. Gutowski, A. Hoffmann, Adv. Mat. Opt. Electron. 3, 15 (1994)

    Google Scholar 

  66. X.J. Zhang, W. Ji, S.H. Tang, J. Opt. Soc. B 14, 1951 (1997)

    Google Scholar 

  67. R.E. Sherriff et al., J. Appl. Phys. 88, 3454 (2000)

    Google Scholar 

  68. T. Koida et al., Appl. Phys. Lett. 82, 532 (2003)

    Google Scholar 

  69. A. Teke et al., Phys. Rev. B 70, 195207 (2004)

    Google Scholar 

  70. J. Wilkinson, K.B. Ucer, R.T. Williams, Nucl. Instr. Meth. Phys. Res. A 537, 66 (2005)

    Google Scholar 

  71. G. Xiong et al., J. Phys.:Cond. Matter 17, 7287 (2005)

    Google Scholar 

  72. S.W. Jung et al., Appl. Phys. Lett. 80, 1924 (2002)

    Google Scholar 

  73. B. Guo, Z.R. Qiu, K.S. Wong, Appl. Phys. Lett. 82, 2290 (2003)

    Google Scholar 

  74. T. Koida et al., Appl. Phys. Lett. 84, 1079 (2004)

    Google Scholar 

  75. F.-Y. Jen et al., Appl. Phys. Lett. 87, 252117 (2005)

    Google Scholar 

  76. S.F. Chichibu et al., J. Appl. Phys. 99, 093505 (2006)

    Google Scholar 

  77. S. Hong et al., Appl. Phys. Lett. 83, 4157 (2003)

    Google Scholar 

  78. V.A. Fonoberov, A.A. Balandin, Phys. Rev. B 70, 195410 (2004)

    Google Scholar 

  79. H. Priller et al., J. Luminesc. 112, 173 (2005)

    Google Scholar 

  80. Y.H. Leung et al., Nanotechnology 16, 579 (2005)

    Google Scholar 

  81. C. Morhain et al., Phys. Rev. B 72, 241305(R) (2005)

    Google Scholar 

  82. C.P. Li et al., Sol. State Commun. 139, 355 (2006)

    Google Scholar 

  83. J.V. Foreman et al., Nano Lett. 6, 1126 (2006)

    Google Scholar 

  84. L. Fan et al., Opt. Mat. 29, 532 (2007)

    Google Scholar 

  85. H. Ichida et al., J. Luminesc. 128, 1059 (2008)

    Google Scholar 

  86. J. Fallert et al., Opt. Exp. 16, 1125 (2008)

    Google Scholar 

  87. J.A. Davies, C. Jagadish, Laser Photon. Rev. 3(1), 1 (2008)

    Google Scholar 

  88. T. Makino et al., Appl. Phys. Lett. 77, 1632 (2000)

    Google Scholar 

  89. T. Bretagnon et al., J. Crystal Growth 287, 12 (2006)

    Google Scholar 

  90. T.V. Shubina et al., Appl. Phys. Lett. 91, 201104 (2007)

    Google Scholar 

  91. T. Makino et al., Appl. Phys. Lett. 93, 121907 (2008)

    Google Scholar 

  92. Z. Wei-Li et al., Chin. Phys. Lett. 16, 728 (1999)

    Google Scholar 

  93. A. van Dijken et al., J. Phys. Chem. B, 104, 1715 (2000)

    Google Scholar 

  94. A. van Dijken et al., J. Luminesc. 87–89, 454 (2000)

    Google Scholar 

  95. T. Hirari et al., J. Luminesc. 94–95, 261 (2001)

    Google Scholar 

  96. B. Gil, A.V. Kakovin, Appl. Phys. Lett. 81, 748 (2002)

    Google Scholar 

  97. V.A. Fonoberov et al. Phys. Rev. B 73, 165317 (2006)

    Google Scholar 

  98. J. Fallert et al., J. Appl. Phys. 101, 073506 (2007)

    Google Scholar 

  99. T. Makino et al., J. Phys. Soc. Jpn. 75, 095001 (2006)

    Google Scholar 

  100. M. Hauser et al., Appl. Phys. Lett. 92, 211105 (2008)

    Google Scholar 

  101. J.B. Baxter, C.A. Schmuttenmaer, J. Phys. Chem. B 110, 25229 (2006)

    Google Scholar 

  102. P. Queiroz et al., Superlattice Microstr. 42, 270 (2007)

    Google Scholar 

  103. M. Niehaus, R. Schwarz, Superlattice Microstr. 42, 299 (2007)

    Google Scholar 

  104. S. Hess, Z. Physik A 255, 206 (1972)

    Google Scholar 

  105. S. Hess Z. Physik A 260, 358 (1973)

    Google Scholar 

  106. X.D. Yang et al., J. Appl. Phys. 99, 046101 (2006)

    Google Scholar 

  107. E.J. Rashba, G.E. Gurgenishvili, Sov. Phys. Sol. State 4, 759 (1962)

    Google Scholar 

  108. G.W. tHooft et al., Phys. Rev. B 35, 8281 (1987)

    Google Scholar 

  109. W.J. Rappel, L.F. Feiner, M.F.H. Schuurmans, Phys. Rev. B 38, 7874 (1988)

    Google Scholar 

  110. L.C. Andreani, Sol. State Commun. 77, 641 (1991)

    Google Scholar 

  111. A. Klochikhin et al., JETP Lett. 71, 242 (2000)

    Google Scholar 

  112. A. Klochikhin et al., JETP Lett. 72, 320 (2000)

    Google Scholar 

  113. A. Klochikhin et al., Phys. Rev. B 59, 12947 (1999)

    Google Scholar 

  114. A. Klochikhin et al., Phys. Rev. B 69, 085308 (2004)

    Google Scholar 

  115. M. Kubota et al., Appl. Phys. Lett. 90, 141903 (2007)

    Google Scholar 

  116. F.-Y. Jen et al., Appl. Phys. Lett. 87, 972103 (2005)

    Google Scholar 

  117. R. Dingle, Phys. Rev. Lett. 23, 579 (1969)

    Google Scholar 

  118. R. Kuhnert, R. Helbig, J. Luminesc. 26, 203 (1981)

    Google Scholar 

  119. L.S. Vlasenko, G.D. Watkins, R. Helbig, Phys. Rev. B 71, 115205 (2005)

    Google Scholar 

  120. M. Deicher, Physica B 389, 51 (2007)

    Google Scholar 

  121. A. Gupta, N.K. Verma, H.S. Bhatti, J. Low Temp. Phys. 147, 49 (2007)

    Google Scholar 

  122. H. Priller et al., Appl. Phys. Lett. 86, 111909 (2005)

    Google Scholar 

  123. I.H. Lee et al., J. Appl. Phys. 93, 4939 (2003)

    Google Scholar 

  124. T. Makino et al., J. Appl. Phys. 99, 066108 (2006)

    Google Scholar 

  125. A. Müller et al., J. Appl. Phys. 107, 013704 (2010)

    Google Scholar 

  126. A. Yamamoto et al., Appl. Phys. Lett. 75, 469 (1999)

    Google Scholar 

  127. M. Schwalm et al., Phys. Stat. Sol. C 6, 542 (2009)

    Google Scholar 

  128. E. Hendry, M. Koeberg, M. Bonn, Phys. Rev. B 76, 045214 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Klingshirn .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klingshirn, C. (2010). Dynamic Processes. In: Zinc Oxide. Springer Series in Materials Science, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10577-7_12

Download citation

Publish with us

Policies and ethics