Skip to main content

Introduction

  • Chapter
  • First Online:
Zinc Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 120))

Abstract

The purpose of this introduction is – after a few general words on ZnO – to inform the reader about the history of ZnO research, the contents of this book and the intentions of the authors. Zinc oxide (ZnO) is a IIb–VI compound semiconductor. This group comprises the binary compounds of Zn, Cd and Hg with O, S, Se, Te and their ternary and quaternary alloys. The band gaps of these compounds cover the whole band gap range from E g ≈ 3. 94 eV for hexagonal ZnS down to semimetals (i.e., E g = 0 eV) for most of the mercury compounds. ZnO itself is also a wide gap semiconductor with E g ≈ 3. 436 eV at T = 0 K and (3. 37 ± 0. 01) eV at room temperature. For more details on the band structure, see Chaps. 4 and 6 or for a recent collection of data on ZnO, for example, [Rössler et al. (eds) Landolt-Börnstein, New Series, Group III, Vols. 17 B, 22, and 41B, 1999]. Like most of the compounds of groups IV, III–V, IIb–VI and Ib–VII, ZnO shows a tetrahedral coordination. In contrast to several other IIb–VI compounds, which occur both in the hexagonal wurtzite and the cubic zinc blende type structure such as ZnS, which gave the name to these two modifications, ZnO occurs almost exclusively in the wurtzite type structure. It has a relatively strong ionic binding (see Chap. 2). The exciton binding energy in ZnO is 60 meV [Thomas, J. Phys. Chem. Solids 15:86, 1960], the largest among the IIb–VI compounds, but by far not the largest for all semiconductors since, for example, CuCl and CuO have exciton binding energies around 190 and 150 meV, respectively. See, for example, [Rössler et al. (eds) Landolt-Börnstein, New Series, Group III, Vols. 17B, 22, and 41B, 1999; Thomas, J. Phys. Chem. Solids 15:86, 1960; Klingshirn and Haug, Phy. Rep. 70:315, 1981; Hönerlage et al., Phys. Rep. 124:161, 1985] and references therein. More details on excitons will be given in Chap. 6. ZnO has a density of about 5. 6 g ∕ cm3 corresponding to 4. 2 × 1022 ZnO molecules per cm3 [Hallwig and Mollwo, Verhandl. DPG (VI) 10, HL37, 1975]. ZnO occurs naturally under the name zinkit. Owing to the incorporation of impurity atoms such as Mn or Fe, zinkit looks usually yellow to red. Pure, synthetic ZnO is colourless and clear in agreement to the gap in the near UV. The growth of ZnO and ZnO-based nano-structures is treated in Chap. 3. ZnO is used by several 100,000 tons per year, for example, as additive to concrete or to the rubber of tires of cars. In smaller quantities, it is used in pharmaceutical industries, as an additive to human and animal food, as a material for sensors and for varistors or as transparent conducting oxide. For more details and aspects of present and forthcoming applications, see Chap. 13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Rössler et al. eds., Landolt-Börnstein, New Series, Group III, Vols. 17B, 22, and 41B (Springer, Berlin, 1999)

    Google Scholar 

  2. M.V. Goldschmidt, Chem. Ber. 60, 1263 (1927)

    Google Scholar 

  3. J. Ewles, Proc. R. Soc. Lond. A Biol. Sci. 167, 34 (1938)

    Article  Google Scholar 

  4. H. Schulz, K. H. Thiemann, Solid State Commun. 32, 783 (1979)

    Article  Google Scholar 

  5. D. Hallwig, E. Mollwo, Verhandl. DPG (VI) 10, HL37 (1975)

    Google Scholar 

  6. C.G. Maier, J. Am. Chem. Soc., 48, 364 and 2564 (1926)

    Google Scholar 

  7. L. Pauling, J. Am. Chem. Soc. 49, 765 (1927)

    Article  Google Scholar 

  8. F.A. Kröger, Physica, 7, 1 (1940)

    Article  Google Scholar 

  9. F.A. Kröger, H.J. Meyer, Physica, 20, 1149 (1954)

    Article  Google Scholar 

  10. C.W. Bunn, Proc. Phys. Soc. Lond. A Math. Phys. Sci. 47, 835 (1935)

    Google Scholar 

  11. Landolt-Börnstein, New Series, Group III, Vol. 8 (1972)

    Google Scholar 

  12. E. Mollwo, Physik 1, 1 (1944)

    Google Scholar 

  13. M.L. Fuller, J. Appl. Phys. 15, 164 (1944)

    Article  Google Scholar 

  14. E. Scharowski, Z. Physik 135, 138 (1953)

    Google Scholar 

  15. E.M. Dodson, J.A. Savage, J. Mat. Sci. 3, 19 (1968)

    Article  Google Scholar 

  16. R. Helbig, J. Cryst. Growth 15, 25 (1972)

    Article  Google Scholar 

  17. R.A. Laudise, A.A. Ballmann, J. Phys. Chem. 64, 688 (1960)

    Article  Google Scholar 

  18. H. Schneck, R. Helbig, Thin Solid Films 27, 101 (1975)

    Article  Google Scholar 

  19. W. Jander, W. Stamm, Anorg. Allgem. Chem. 119, 165 (1931)

    Article  Google Scholar 

  20. H.E. Brown, Zinc Oxide Rediscovered (The New Jersey Zinc Company, New York, 1957)

    Google Scholar 

  21. H. Heiland, E. Mollwo, F. Stöckmann, Solid State Phys 8, 191 (1959)

    Article  Google Scholar 

  22. H.H. Baumbach, C.Z. Wagner, Phys. Chem. B 22, 199 (1933)

    Google Scholar 

  23. P.H. Miller Jr., in Proc. Intern. Conf. on Semiconducting Materials, Reading (1950)

    Google Scholar 

  24. H.K. Henisch (ed.), p. 172, Butterworths Scientific Publications, London (1951)

    Google Scholar 

  25. H.E. Brown, Zinc Oxide, Properties and Applications (The New Jersey Zinc Company, New York, 1976)

    Google Scholar 

  26. C. Klingshirn, H. Haug, Phy. Rep. 70, 315 (1981)

    Article  Google Scholar 

  27. B. Hönerlage et al. Phys. Rep. 124, 161 (1985)

    Article  Google Scholar 

  28. W. Hirschwald et al. Curr. Top Mater. Sci. 7, 143 (1981)

    Google Scholar 

  29. R. Helbig, Freie und Gebundene Exzitonen in ZnO, Habilitation Thesis, Erlangen (1975)

    Google Scholar 

  30. K. Hümmer, Exzitonische Polaritonen in einachsigen Kristallen, Habilitation Thesis, Erlangen (1978)

    Google Scholar 

  31. M. Ueta et al. Excitonic Processes in Solids, Springer Series in Solid State Science, 60 (1986)

    Google Scholar 

  32. C. Klingshirn, Semiconductor Optics, 3rd edn. (Springer, Berlin, 2007)

    Google Scholar 

  33. M. Ataev et al. Thin Solid Films 260, 19 (1995)

    Article  Google Scholar 

  34. M. Göppert et al. J. Lumin. 72–74, 430 (1997)

    Article  Google Scholar 

  35. S.Y. Myong et al. Jpn. J. Appl. Phys. 36, L1078 (1997)

    Article  Google Scholar 

  36. H. Kato et al. J. Cryst. Growth 237–239, 538 (2002)

    Article  Google Scholar 

  37. T. Makino et al. Appl. Phys. Lett. 85, 759 (2004)

    Article  Google Scholar 

  38. T.V. Butkhuzi et al. J. Cryst. Growth 117, 366 (1992)

    Article  Google Scholar 

  39. Landolt-Börnstein, New Series, Group III, Vol. 34C C. Klingshirn ed., Springer, Berlin (2001)

    Google Scholar 

  40. S. Nakamura, G. Fasol, The Blue Laser Diode (Springer, Heidelberg, 1997)

    Google Scholar 

  41. D.C. Look et al. Phys. Stat. Sol. A 201, 2203 (2004)

    Article  Google Scholar 

  42. C. Klingshirn et al. Adv. Solid State Phys. 45, 261 (2005)

    Google Scholar 

  43. Ü. Özgür et al. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  44. C. Klingshirn et al. Phy. J. 5(1), 33 (2006)

    Google Scholar 

  45. A. Osinsky, S. Karpov in ZnO Bulk, Thin Films and Nanostructures, ed. By C. Jagadish, S.J. Pearton p525 (Elsevier, London, 2006), p. 525

    Google Scholar 

  46. N.H. Nickel and E. Terukov eds., Zinc Oxide – A Material for Micro- and Optoelectronic Applications, NATO Science Series II, 194 (2005)

    Google Scholar 

  47. C. Jagadish, S.J. Pearton (eds.) Zinc Oxide Bulk, Thin Films and Nanostructures (Elsevier, Amsterdam, 2006)

    Google Scholar 

  48. C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007)

    Google Scholar 

  49. C. Klingshirn et al. Superlattice Microst. 38, 209 (2005)

    Article  Google Scholar 

  50. C. Klingshirn et al. NATO Sci Series II 231, 277 (2006)

    Google Scholar 

  51. S. Tüzemen, E. Gür, Opt. Mater. 30, 292 (2007)

    Article  Google Scholar 

  52. C. Klingshirn, Phys. Stat. Sol. B 244, 3027 (2007)

    Article  Google Scholar 

  53. H. Morkoç, Ü. Özgür, Zinc Oxide (Wiley-VCH, Weinheim, 2009)

    Book  Google Scholar 

  54. D.G. Thomas, J. Phys. Chem. Solids 15, 86 (1960)

    Article  Google Scholar 

  55. M. Willander et al. Nanotechnology 20, 332001 (2009)

    Article  Google Scholar 

  56. C. Klingshirn et al. Phys. Stat. Sol. B 247, 1424 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Klingshirn .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klingshirn, C. (2010). Introduction. In: Zinc Oxide. Springer Series in Materials Science, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10577-7_1

Download citation

Publish with us

Policies and ethics