Skip to main content

Simulation Strategies

  • Chapter
  • First Online:
Theory of Semiconductor Quantum Devices

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In this chapter we shall introduce basic concepts as well as key instruments related to the numerical modeling of semiconductor nanomaterials and nanodevices. The large variety of available numerical instruments may be subdivided into two major classes: (i) deterministic techniques and (ii) stochastic approaches. As we shall see, while the former are based on deterministic discretization algorithms, the latter are strongly linked to the use of random numbers. As anticipated in Sect. 2.6, the proper choice of the optimal modeling technique depends strongly on the problem under examination, i.e., semiclassical versus quantum-mechanical regimes described via phenomenological versus microscopic treatments (see Fig. 2.9); it follows that for specific problems, a proper combination of deterministic and stochastic algorithms is also required (see Sect. 5.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer, Vienna, 1989)

    Google Scholar 

  2. W.R. Frensley, Rev. Mod. Phys. 62, 745 (1990)

    Article  Google Scholar 

  3. R. Brunetti, C. Jacoboni, F. Rossi, Phys. Rev. B 39, 10781 (1989)

    Article  Google Scholar 

  4. W. Quade, E. Schöll, F. Rossi, C. Jacoboni, Phys. Rev. B 50, 7398 (1994)

    Article  CAS  Google Scholar 

  5. R. Brunetti, C. Jacoboni, P.J. Price, Phys. Rev. B 50, 11872 (1994)

    Article  CAS  Google Scholar 

  6. R. Brunetti, C. Jacoboni, Phys. Rev. B 57, 1723 (1998)

    Article  CAS  Google Scholar 

  7. M. Pascoli, P. Bordone, R. Brunetti, C. Jacoboni, Phys. Rev. B 58, 3503 (1998)

    Article  CAS  Google Scholar 

  8. P. Bordone et al., Phys. Rev. B 59, 3060 (1999)

    Article  CAS  Google Scholar 

  9. C. Jacoboni, R. Brunetti, S. Monastra, Phys. Rev. B 68, 125205 (2003)

    Article  Google Scholar 

  10. E. Cancellieri, P. Bordone, C. Jacoboni, Phys. Rev. B 76, 214301 (2007)

    Article  Google Scholar 

  11. D. Taj, L. Genovese, F. Rossi, Europhys. Lett. 74, 1060 (2006)

    Article  CAS  Google Scholar 

  12. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, NY, 1965)

    Google Scholar 

  13. O.C. Zienkiewicz, Introductory Lectures on the Finite Element Method (Springer, Vienna, 1972)

    Google Scholar 

  14. C.S. Desai, Elementary Finite Element Method (Prentice Hall, Englewood Cliffs, NJ, 1979)

    Google Scholar 

  15. D.W. Pepper, J.C. Heinrich, Finite Element Method: Basic Concepts and Applications (Taylor & Francis, Washington, DC, 1992)

    Google Scholar 

  16. O.C. Zienkiewicz, The Finite Element Method, 5th edn. (Wiley, New York, NY, 2001)

    Google Scholar 

  17. I. Babuska, T. Strouboulis, The Finite Element Method and its Reliability (Oxford University Press, Oxford, 2001)

    Google Scholar 

  18. E.G. Thompson, Introduction to the Finite Element Method: Theory, Programming and Applications (Wiley, New York, NY, 2004)

    Google Scholar 

  19. M.R. Gosz, Finite Element Method (Taylor & Francis, Boca Raton, FL, 2005)

    Google Scholar 

  20. P. Solin, Partial Differential Equations and the Finite Element Method (Wiley, New York, NY, 2005)

    Book  Google Scholar 

  21. W. Kuntjoro, An Introduction to the Finite Element Method (McGraw-Hill Education – Europe, Maidenhead, UK, 2006)

    Google Scholar 

  22. M.S. Gockenbach, Understanding and Implementing the Finite Element Method (Society for Industrial & Applied Mathematics, New York, NY, 2008)

    Google Scholar 

  23. J.O. Dow, A Unified Approach to the Finite Element Method and Error Analysis Procedures (Academic Press, London, 2009)

    Google Scholar 

  24. P. Tong, J.N. Rossettos, Finite Element Method: Basic Technique and Implementation (Dover Publications, New York, NY, 2009)

    Google Scholar 

  25. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method (Dover Publications, New York, NY, 2009)

    Google Scholar 

  26. J.N. Reddy, An Introduction to the Finite Element Method, 3rd edn. (McGraw-Hill Education – Europe, Maidenhead, UK, 2009)

    Google Scholar 

  27. A.R. Mitchell, D.F. Griffiths, The Finite Difference Method in Partial Differential Equations (Wiley, Chichester, 1980)

    Google Scholar 

  28. Handbook of Numerical Analysis: Finite Difference Methods, vol. 1, ed. by P.G. Ciarlet, J.L. Lions (Elsevier Science & Technology, Oxford, 1990)

    Google Scholar 

  29. R.E. Mickens, Nonstandard Finite Difference Models of Differential Equations (World Scientific Publishing, Singapore, 1993)

    Google Scholar 

  30. E. Suli, Analysis of Finite Difference Schemes (Kluwer Academic Publishers Group, Dordrecht, 1996)

    Google Scholar 

  31. J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods (Springer Publishing Map, New York, NY, 1998)

    Google Scholar 

  32. R.E. Mickens, Applications of Nonstandard Finite Difference Schemes (World Scientific Publishing, Singapore, 2000)

    Book  Google Scholar 

  33. R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-state and Time-dependent Problems (Society for Industrial & Applied Mathematics, New York, NY, 2007)

    Google Scholar 

  34. J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 2nd edn. (Society for Industrial & Applied Mathematics, New York, NY, 2007)

    Google Scholar 

  35. S. Barbieri, F. Beltram, F. Rossi, Phys. Rev. B 60, 1953 (1999)

    Article  CAS  Google Scholar 

  36. J.C. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd edn. (Wiley, Chicester, 2008)

    Book  Google Scholar 

  37. J.M. Hammersley, D.C. Handscomb, Monte Carlo Methods (Methuen, London, 1964)

    Google Scholar 

  38. I.M. Sobol, The Monte Carlo Method (Mir, Moscow, 1975)

    Google Scholar 

  39. K.K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems (Springer, Berlin Heidelberg, 1991)

    Google Scholar 

  40. I.M. Sobol, A Primer for the Monte Carlo Method (Taylor & Francis, Boca Raton, FL, 1994)

    Google Scholar 

  41. C.P. Robert, G.C. Casella, Monte Carlo Statistical Methods (Springer, New York, NY, 1999)

    Google Scholar 

  42. G.S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications (Springer, New York, NY, 2003)

    Google Scholar 

  43. J.E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd edn. (Springer Publishing Map, New York, NY, 2004)

    Google Scholar 

  44. G.S. Fishman, First Course in Monte Carlo Simulation (Cengage Learning, New York, NY, 2005)

    Google Scholar 

  45. J.S. Liu, Monte Carlo Strategies in Scientific Computing (Springer Publishing Map, New York, NY, 2008)

    Google Scholar 

  46. R.Y. Rubinstein, Simulation and the Monte Carlo Method, 2nd edn. (Wiley, Chicester, 2008)

    Google Scholar 

  47. M.H. Kalos, P.A. Whitlock, Monte Carlo Methods, 2nd edn. (Wiley-VCH Verlag GmbH, Weinheim, 2008)

    Book  Google Scholar 

  48. C. Lemieux, Monte Carlo and Quasi-Monte Carlo Sampling (Springer Publishing Map, New York, NY, 2009)

    Google Scholar 

  49. C. Rebbi, Lattice Gauge Theories and Monte Carlo Simulations (World Scientific Publishing, Singapore, 1983)

    Google Scholar 

  50. W.A. Lester, B.L. Hammond, P.J. Reynolds, Monte Carlo Methods in Ab Initio Quantum Chemistry (World Scientific Publishing, Singapore, 1991)

    Google Scholar 

  51. R. Billinton, W. Li, Reliability Assessment of Electrical Power Systems Using Monte Carlo Methods (Springer, Boston, MA, 1994)

    Google Scholar 

  52. G. Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo Methods: A Mathematical Introduction (Springer, Berlin Heidelberg, 1994)

    Google Scholar 

  53. D.C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford University Press, New York, NY, 1995)

    Google Scholar 

  54. S.A. Dupree, S.K. Fraley, A Monte Carlo Primer: A Practical Approach to Radiation Transport (Springer Publishing Map, Boston, MA, 2001)

    Google Scholar 

  55. H. Zaidi, G. Sgouros, Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine (Taylor & Francis, London, 2002)

    Book  Google Scholar 

  56. D.L. McLeish, Monte Carlo Simulation and Finance (Wiley, New York, NY, 2005)

    Google Scholar 

  57. D. Gamerman, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd edn. (Taylor & Francis, London, 2006)

    Google Scholar 

  58. B.F.J. Manly, Randomization, Bootstrap and Monte Carlo Methods in Biology, 3rd edn. (Taylor & Francis, London, 2006)

    Google Scholar 

  59. C. Lim, J. Nebus, Vorticity, Statistical Mechanics, and Monte Carlo Simulation (Springer Publishing Map, New York, NY, 2006)

    Google Scholar 

  60. J.S. Dagpunar, Simulation and Monte Carlo: With Applications in Finance and MCMC (Wiley, Chichester, 2007)

    Google Scholar 

  61. J.B. Anderson, Quantum Monte Carlo: Origins, Development, Applications (Oxford University Press, New York, NY, 2007)

    Google Scholar 

  62. J.J. Buckley, L.J. Jowers, Monte Carlo Methods in Fuzzy Optimization (Springer Publishing Map, Berlin Heidelberg, 2008)

    Google Scholar 

  63. M.N.O. Sadiku, Monte Carlo Methods for Electromagnetics (Taylor & Francis, Boca Raton, FL, 2009)

    Book  Google Scholar 

  64. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 3rd edn. (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  65. R. Korn, E. Korn, G. Kroisandt, Monte Carlo Methods and Models in Finance and Insurance (Taylor & Francis, Boca Raton, FL, 2009)

    Google Scholar 

  66. K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics, 5th edn. (Springer, Berlin Heidelberg, 2010)

    Book  Google Scholar 

  67. H.D. Rees, Phys. Lett. A 26, 416 (1968)

    Article  Google Scholar 

  68. M. Reed, B. Simon, Functional Analysis (Elsevier Science, Oxford, UK, 1981)

    Google Scholar 

  69. F. Rossi, P. Poli, C. Jacoboni, Topical review on: Weighted Monte Carlo approach to electron transport in semiconductors. Semicond. Sci. Technol. 7, 1017 (1992)

    Article  CAS  Google Scholar 

  70. R.G. Chambers, Proc. Phys. Soc. A 65, 458 (1952)

    Article  Google Scholar 

  71. T. Kuhn, F. Rossi, Phys. Rev. Lett. 69, 977 (1992)

    Article  Google Scholar 

  72. T. Kuhn, F. Rossi, Phys. Rev. B 46, 7496 (1992)

    Article  Google Scholar 

  73. F. Rossi, S. Haas, T. Kuhn, Phys. Rev. Lett. 72, 152 (1994)

    Article  CAS  Google Scholar 

  74. S. Haas, F. Rossi, T. Kuhn, Phys. Rev. B 53, 12855 (1996)

    Article  CAS  Google Scholar 

  75. R.C. Iotti, F. Rossi, Rep. Prog. Phys. 68, 2533 (2005)

    Article  Google Scholar 

  76. A. Lohner et al., Phys. Rev. Lett. 71, 77 (1993)

    Article  CAS  Google Scholar 

  77. A. Leitenstorfer et al., Phys. Rev. B 49, 16372 (1994)

    Article  Google Scholar 

  78. A. Leitenstorfer et al., Phys. Rev. Lett. 73, 1687 (1994)

    Article  CAS  Google Scholar 

  79. A. Leitenstorfer et al., Phys. Rev. B 53, 9876 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Rossi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rossi, F. (2011). Simulation Strategies. In: Theory of Semiconductor Quantum Devices. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10556-2_5

Download citation

Publish with us

Policies and ethics