Skip to main content

Part of the book series: NanoScience and Technology ((NANO))

  • 1360 Accesses

Abstract

Manipulation of magnetization by electric current lies in the mainstream of the rapidly developing field of spintronics. The electric current influences the magnetization through the spin-torque effect. Entering a magnet, spin-polarized current exerts a torque on the magnetization, which aligns the magnetization parallel or antiparallel to the spin polarization of the current. The spin-torque effect can be used for fast magnetization switching in magnetic tunnel junctions (MTJ) that consist of two magnetic layers separated by a tunnel barrier. Moreover, applying external magnetic field and passing electric current simultaneously, one can induce a wide variety of nonequilibrium dynamical regimes, ranging from hysteretic switching between two static orientations of magnetization to steady nonequilibrium magnetization precession. Theoretical description of nonlinear nonequilibrium magnetization dynamics is given by the Landau–Lifshitz–Gilbert (LLG) equation. In this approach, the magnetization is treated on a classical level, resulting in a deterministic dynamics, which can exhibit crossover from periodic to chaotic orbits. In presence of spin-polarized current, there are nonequilibrium fluctuations of magnetization – the spin shot noise – that distort the classical dynamics of magnetization. Those fluctuations originate from the discrete nature of spin and, in this respect, they are similar to the well-known shot noise in the charge transport that stems from the discreteness of charge.

A particular feature of the nonequilibrium spin noise is its dependence on the angle between the magnetizations of the magnetic layers forming the junction. This peculiarity leads to the appearance of so-called “hot” and “cold” spots with different noise strengths in the deterministic trajectory of magnetization. Due to the tunnel magnetoresistance effect, the distortion of deterministic magnetization dynamics by the spin shot noise transforms into fluctuations of electric current that are registered experimentally. Peculiar features of the spin shot noise are thereby reflected in the frequency spectrum of electric current fluctuations.

At present time, there are two theoretical approaches to the treatment of the nonequilibrium spin shot noise and the complementary charge shot noise in MTJs. One is based on the extension of Landauer–Büttiker formalism to magnetic junctions, the other one uses the introduction of stochastic Langevin terms into the LLG equation with subsequent derivation of the Fokker–Planck equation for the distribution function of magnetization. In this review, we discuss both approaches with an emphasis on the second one. In addition, a general review of theoretical and experimental works concerning equilibrium and nonequilibrium noise in magnetization dynamics is given. In particular, we discuss the effects of noise in different regimes of magnetization dynamics, such as switching of magnetization between two static orientations and steady state nonequilibrium magnetization precession.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.F. Brown, Phys. Rev. 130, 1677 (1963)

    Article  Google Scholar 

  2. J.C. Slonczewski, J. Magn. Magn. Mater. 286, L1 (1996)

    Article  Google Scholar 

  3. Z. Li, S. Zhang, Phys. Rev. B 69, 134416 (2004)

    Article  Google Scholar 

  4. D. Cimpoesu, H. Pham, A. Stancu, L. Spinu, J. Appl. Phys. 104, 113918 (2008)

    Article  Google Scholar 

  5. D.M. Apalkov, P.B. Visscher, Phys. Rev. B 72, 180405 (2005)

    Article  Google Scholar 

  6. D.M. Apalkov, P.B. Visscher, J. Magn. Magn. Mater. 159, 370 (2005)

    Article  Google Scholar 

  7. J. Foros, A. Brataas, Y. Tserkovnyak, G.E. Bauer, Phys. Rev. Lett. 95, 016601 (2005)

    Article  Google Scholar 

  8. W. Wernsdorfer, E.B. Orozco, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, D. Mailly, Phys. Rev. Lett. 78, 1791 (1997)

    Article  Google Scholar 

  9. R.H. Koch, G. Grinstein, G.A. Keefe, Y. Lu, P.L. Trouilloud, W.J. Gallagher, S.S.P. Parkin, Phys. Rev. Lett. 84, 5419 (2000)

    Article  Google Scholar 

  10. E.B. Myers, F.J. Albert, J.C. Sankey, E. Bonet, R.A. Buhrman, D.C. Ralph, Phys. Rev. Lett. 89, 196801 (2002)

    Article  Google Scholar 

  11. S. Urazhdin, N.O. Birge, W.P. Pratt Jr., J. Bass, Phys. Rev. Lett. 91, 146803 (2003)

    Article  Google Scholar 

  12. S. Urazhdin, H. Kurt, W.P. Pratt Jr., J. Bass, Appl. Phys. Lett. 83, 114 (2003)

    Article  Google Scholar 

  13. A. Fabian, C. Terrier, S.S. Guisan, X. Hoffer, M. Dubey, L. Gravier, J.P. Ansermet, J.E. Wegrowe, Phys. Rev. Lett. 91, 257209 (2003)

    Article  Google Scholar 

  14. S. Krause, L. Berbil-Bautista, G. Herzog, M. Bode, R. Wiesendanger, Science 317, 1537 (2007)

    Article  Google Scholar 

  15. L. Neel, Ann. Geophys. 5, 99 (1948)

    Google Scholar 

  16. J. Foros, A. Brataas, G.E. Bauer, Y. Tserkovnyak, Phys. Rev. B 75, 092405 (2007)

    Article  Google Scholar 

  17. M. Büttiker, Phys. Rev. B 46, 12485 (1992)

    Article  Google Scholar 

  18. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  19. J. Foros, A. Brataas, G.E.W. Bauer, Y. Tserkovnyak, Phys. Rev. B 79, 214407 (2009)

    Article  Google Scholar 

  20. J.C. Slonczewski, J. Magn. Magn. Mater. 195, L261 (1999)

    Article  Google Scholar 

  21. L. Berger, Phys. Rev. B 54, 9353 (1996)

    Article  Google Scholar 

  22. A.N. Slavin, P. Kabos, IEEE Trans. Magn. 41, 1264 (2005)

    Article  Google Scholar 

  23. W.H. Rippard, M.R. Pufall, S. Kaka, S.E. Russek, T.J. Silva, Phys. Rev. Lett. 92, 027201 (2004)

    Article  Google Scholar 

  24. W.H. Rippard, M.R. Pufall, S. Kaka, T.J. Silva, S.E. Russek, Phys. Rev. B 70, 100406 (2004)

    Article  Google Scholar 

  25. A. Slavin, V. Tiberkevich, IEEE Trans. Magn. 45, 1875 (2009)

    Article  Google Scholar 

  26. A. Slavin, V. Tiberkevich, IEEE Trans. Magn. 44, 1916 (2008)

    Article  Google Scholar 

  27. J.C. Sankey, I.N. Krivorotov, S.I. Kiselev, P.M. Braganca, N.C. Emley, R.A. Buhrman, D.C. Ralph, Phys. Rev. B 72, 224427 (2005)

    Article  Google Scholar 

  28. J. Kim, V. Tiberkevich, A.N. Slavin, Phys. Rev. Lett. 100, 017207 (2008)

    Article  Google Scholar 

  29. V. Tiberkevich, A. Slavin, J.V. Kim, Appl. Phys. Lett. 91, 192506 (2007)

    Article  Google Scholar 

  30. V. Tiberkevich, A. Slavin, J.V. Kim, Phys. Rev. B 78, 092401 (2008)

    Article  Google Scholar 

  31. B. Georges, J. Grollier, V. Cros, A. Fert, A. Fukushima, H. Kubota, K. Yakushijin, S. Yuasa, K. Ando, arXiv:0904.0880 [cond-mat.matrl-sci] (2009)

    Google Scholar 

  32. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Nature 425, 380 (2003)

    Article  Google Scholar 

  33. W.H. Rippard, M.R. Pufall, S. Russek, Phys. Rev. B 74, 224409 (2006)

    Article  Google Scholar 

  34. Q. Mistral et al., Appl. Phys. Lett. 88, 192507 (2006)

    Article  Google Scholar 

  35. M. Zareyan, W. Belzig, Phys. Rev. B 71, 184403 (2005)

    Article  Google Scholar 

  36. A. Lamacraft, Phys. Rev. B 69, 081301 (2004)

    Article  Google Scholar 

  37. W. Belzig, M. Zareyan, Phys. Rev. B 69, 140407 (2004)

    Article  Google Scholar 

  38. B.R. Bułka, J. Martinek, G. Michałek, J. Barnaś, Phys. Rev. B 60, 12246 (1999)

    Article  Google Scholar 

  39. A.L. Chudnovskiy, J. Swiebodzinski, A. Kamenev, Phys. Rev. Lett. 101, 066601 (2008)

    Article  Google Scholar 

  40. M.E. Lucassen, H.J. van Driel, C.M. Smith, R.A. Duine, Phys. Rev. B 79, 224411 (2009)

    Article  Google Scholar 

  41. M.E. Lucassen, R.A. Duine, arXiv:0810.5232v3 [cond-mat.mes-hall] (2009)

    Google Scholar 

  42. A. Brataas, Y.V. Nazarov, G.E.W. Bauer, Phys. Rev. Lett. 84, 2481 (2000)

    Article  Google Scholar 

  43. A. Brataas, Y.V. Nazarov, G.E.W. Bauer, Eur. Phys. J. B 22, 99 (2001)

    Article  Google Scholar 

  44. A. Brataas, G.E.W. Bauer, P.J. Kelly, Phys. Rep. 427, 157 (2006)

    Article  Google Scholar 

  45. Y.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000)

    Article  Google Scholar 

  46. T. Holstein, H. Primakoff, Phys. Rev. 58, 1098 (1940)

    Article  Google Scholar 

  47. A. Kamenev, in Nanophysics: Coherence and Transport (Elsevier, Amsterdam, 2005), pp. 177–246

    Google Scholar 

  48. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Phys. Rev. Lett. 88, 117601 (2002)

    Article  Google Scholar 

  49. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, B.I. Halperin, Rev. Mod. Phys. 77, 1375 (2005)

    Article  Google Scholar 

  50. G.A. Prinz, Science 282, 1660 (1998)

    Article  Google Scholar 

  51. S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Chudnovskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chudnovskiy, A., Swiebodzinski, J., Kamenev, A., Dunn, T., Pfannkuche, D. (2010). Charge and Spin Noise in Magnetic Tunnel Junctions. In: Heitmann, D. (eds) Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10553-1_15

Download citation

Publish with us

Policies and ethics