Skip to main content

Part of the book series: NanoScience and Technology ((NANO))

  • 1333 Accesses

Abstract

We give an introduction to spin dynamics in quantum wires. After a review of spin-orbit coupling (SOC) mechanisms in semiconductors, the spin diffusion equation with SOC is introduced. We discuss the particular conditions in which solutions of the spin diffusion equation with vanishing spin relaxation rates exist, where the spin density forms persistent spin helices. We give an overview of spin relaxation mechanisms, with particular emphasis on the motional narrowing mechanism in disordered conductors, the D’yakonov–Perel’ spin relaxation. The solution of the spin diffusion equation in quantum wires shows that the spin relaxation becomes diminished when reducing the wire width below the spin precession length L SO. This corresponds to an effective alignment of the spin-orbit field in quantum wires and the formation of persistent spin helices whose form as well as amplitude is a measure of the particular SOCs, the linear Rashba and the linear Dresselhaus coupling. Cubic Dresselhaus coupling is found to yield in diffusive wires an undiminished contribution to the spin relaxation rate, however. We discuss recent experimental results which confirm the reduction of the spin relaxation rate. We next review theoretical proposals for creating spin-polarized currents in a T-shape structure with Rashba-SOC. For relatively small SOC, high spin polarization can be obtained. However, the corresponding conductance has been found to be small. Due to the self-duality of the scattering matrix for a system with spin-orbit interaction, no spin polarization of the current can be obtained for single-channel transport in two-terminal devices. Therefore, one has to consider at least a conductor with three terminals. We review results showing that the amplitude of the spin polarization becomes large if the SOC is sufficiently strong. We argue that the predicted effect should be experimentally accessible in InAs. For a possible experimental realization of InAs spin filters, see [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Jacob, G. Meier, S. Peters, T. Matsuyama, U. Merkt, A.W. Cummings, R. Akis, D.K. Ferry, J. Appl. Phys. 105(9), 093714 (2009). DOI 10.1063/1.3124359

    Article  Google Scholar 

  2. G. Dresselhaus, Phys. Rev. 100(2), 580 (1955). DOI 10.1103/PhysRev.100.580

    Article  Google Scholar 

  3. E. Rashba, Sov. Phys. Solid State 2(6), 1109 (1960)

    Google Scholar 

  4. R. Lassnig, Phys. Rev. B 31(12), 8076 (1985). DOI 10.1103/PhysRevB.31.8076

    Google Scholar 

  5. R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, Springer Tracts in Modern Physics, vol. 191 (Springer, Berlin, 2003)

    Google Scholar 

  6. F. Malcher, G. Lommer, U. Rössler, Superlattice. Microst. 2(3), 267 (1986). DOI 10.1016/0749-6036(86)90030-3

    Article  Google Scholar 

  7. E. Bernardes, J. Schliemann, M. Lee, J.C. Egues, D. Loss, Phys. Rev. Lett. 99(7), 076603 (2007). DOI 10.1103/PhysRevLett.99.076603

    Article  Google Scholar 

  8. J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, I. Zutic, Acta Phys. Slovaca 57, 565 (2007)

    Google Scholar 

  9. S. Datta, B. Das, Appl. Phys. Lett. 56(7), 665 (1990). DOI 10.1063/1.102730

    Article  Google Scholar 

  10. A.G. Mal’shukov, K.A. Chao, Phys. Rev. B 61(4), R2413 (2000). DOI 10.1103/PhysRevB.61.R2413

    Google Scholar 

  11. P. Schwab, M. Dzierzawa, C. Gorini, R. Raimondi, Phys. Rev. B 74(15), 155316 (2006). DOI 10.1103/PhysRevB.74.155316

    Google Scholar 

  12. P. Wenk, S. Kettemann, Phys. Rev. B 81, 125309 (2010)

    Article  Google Scholar 

  13. P. Wenk, S. Kettemann, in Handbook of Nanophysics, ed. by K. Sattler (Taylor & Francis, New York, 2010)

    Google Scholar 

  14. N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73(7), 679 (1948). DOI 10.1103/PhysRev.73.679

    Article  Google Scholar 

  15. M.I. D’yakonov, V.I. Perel’, Sov. Phys. Solid State 13, 3023 (1972)

    Google Scholar 

  16. N.S. Averkiev, L.E. Golub, Phys. Rev. B 60(23), 15582 (1999). DOI 10.1103/PhysRevB.60.15582

    Google Scholar 

  17. B.A. Bernevig, J. Orenstein, S.C. Zhang, Phys. Rev. Lett. 97(23), 236601 (2006). DOI 10.1103/PhysRevLett.97.236601

    Article  Google Scholar 

  18. Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, H. Ohno, Phys. Rev. Lett. 83(20), 4196 (1999). DOI 10.1103/PhysRevLett.83.4196

    Article  Google Scholar 

  19. M.M. Glazov, E.L. Ivchenko, J. Exp. Theor. Phys. Lett. 75, 403 (2002)

    Article  Google Scholar 

  20. M.M. Glazov, E.L. Ivchenko, J. Exp. Theor. Phys. 99, 1279 (2004)

    Article  Google Scholar 

  21. A. Punnoose, A.M. Finkel’stein, Phys. Rev. Lett. 96(5), 057202 (2006). DOI 10.1103/PhysRevLett.96.057202

    Article  Google Scholar 

  22. A. Dyson, B.K. Ridley, Phys. Rev. B 69(12), 125211 (2004). DOI 10.1103/PhysRevB.69.125211

    Google Scholar 

  23. R.J. Elliott, Phys. Rev. 96(2), 266 (1954). DOI 10.1103/PhysRev.96.266

    Article  Google Scholar 

  24. Y. Yafet, in Solid State Physics, vol. 14, ed. by F. Seitz, D. Turnbull (Academic, New York, 1963)

    Google Scholar 

  25. J.N. Chazalviel, Phys. Rev. B 11(4), 1555 (1975). DOI 10.1103/PhysRevB.11.1555

    Google Scholar 

  26. G.E. Pikus, A.N. Titkov, in Optical Orientation, ed. by F. Meier, B.P. Zakharchenya. Modern Problems in Condensed Matter Sciences, vol. 8 (North-Holland, Amsterdam, 1984), chap. 3, p. 73

    Google Scholar 

  27. G.L. Bir, A.G. Aronov, G.E. Pikus, Sov. Phys. JETP 42, 705 (1976)

    Google Scholar 

  28. E. Müller-Hartmann, J. Zittartz, Phys. Rev. Lett. 26(8), 428 (1971). DOI 10.1103/PhysRevLett.26.428

    Article  Google Scholar 

  29. G.V. Astakhov, R.I. Dzhioev, K.V. Kavokin, V.L. Korenev, M.V. Lazarev, M.N. Tkachuk, Y.G. Kusrayev, T. Kiessling, W. Ossau, L.W. Molenkamp, Phys. Rev. Lett. 101(7), 076602 (2008). DOI 10.1103/PhysRevLett.101.076602

    Article  Google Scholar 

  30. E.L. Ivchenko, Sov. Phys. Solid State 15, 1048 (1973). [Fiz. Tverd. Tela,15:1566,1973]

    Google Scholar 

  31. A.V. Khaetskii, Y.V. Nazarov, Phys. Rev. B 61(19), 12639 (2000). DOI 10.1103/PhysRevB.61.12639

    Google Scholar 

  32. S.I. Erlingsson, Y.V. Nazarov, V.I. Fal’ko, Phys. Rev. B 64(19), 195306 (2001). DOI 10.1103/PhysRevB.64.195306

    Google Scholar 

  33. A. Khaetskii, D. Loss, L. Glazman, Phys. Rev. B 67(19), 195329 (2003). DOI 10.1103/PhysRevB.67.195329

    Google Scholar 

  34. A.V. Khaetskii, D. Loss, L. Glazman, Phys. Rev. Lett. 88(18), 186802 (2002). DOI 10.1103/PhysRevLett.88.186802

    Article  Google Scholar 

  35. R.I. Dzhioev, K.V. Kavokin, V.L. Korenev, M.V. Lazarev, B.Y. Meltser, M.N. Stepanova, B.P. Zakharchenya, D. Gammon, D.S. Katzer, Phys. Rev. B 66(24), 245204 (2002). DOI 10.1103/PhysRevB.66.245204

    Google Scholar 

  36. P.I. Tamborenea, D. Weinmann, R.A. Jalabert, Phys. Rev. B 76(8), 085209 (2007). DOI 10.1103/PhysRevB.76.085209

    Google Scholar 

  37. J.S. Meyer, V.I. Fal’ko, B. Altshuler, Nato Science Series II, vol. 72 (Kluwer Academic, Dordrecht, 2002), p. 117

    Google Scholar 

  38. A. Bournel, P. Dollfus, P. Bruno, P. Hesto, Eur. Phys. J. Appl. Phys. 4(1), 1 (1998). DOI 10.1051/epjap:1998238

    Article  Google Scholar 

  39. A.A. Kiselev, K.W. Kim, Phys. Rev. B 61(19), 13115 (2000). DOI 10.1103/PhysRevB.61.13115

    Google Scholar 

  40. T.P. Pareek, P. Bruno, Phys. Rev. B 65(24), 241305 (2002). DOI 10.1103/PhysRevB.65.241305

    Google Scholar 

  41. T. Kaneko, M. Koshino, T. Ando, Phys. Rev. B 78(24), 245303 (2008). DOI 10.1103/PhysRevB.78.245303

    Google Scholar 

  42. R.L. Dragomirova, B.K. Nikolić, Phys. Rev. B 75(8), 085328 (2007). DOI 10.1103/PhysRevB.75.085328

    Google Scholar 

  43. S. Kettemann, Phys. Rev. Lett. 98(17), 176808 (2007). DOI 10.1103/PhysRevLett.98.176808

    Article  Google Scholar 

  44. B.L. Altshuler, A.G. Aronov, D.E. Khmelnitskii, A.I. Larkin, Quantum Theory of Solids (Mir, Moscow, 1982)

    Google Scholar 

  45. S. Hikami, A.I. Larkin, Y. Nagaoka, Prog. Theor. Phys. 63(2), 707 (1980). DOI 10.1143/PTP.63.707

    Article  Google Scholar 

  46. W. Knap, C. Skierbiszewski, A. Zduniak, E. Litwin-Staszewska, D. Bertho, F. Kobbi, J.L. Robert, G.E. Pikus, F.G. Pikus, S.V. Iordanskii, V. Mosser, K. Zekentes, Y.B. Lyanda-Geller, Phys. Rev. B 53(7), 3912 (1996). DOI 10.1103/PhysRevB.53.3912

    Google Scholar 

  47. C.W.J. Beenakker, H. van Houten, Phys. Rev. B 37(11), 6544 (1988). DOI 10.1103/PhysRevB.37.6544

    Google Scholar 

  48. V.K. Dugaev, D.E. Khmel’nitskii, Sov. Phys. JETP 59(5), 1038 (1984)

    Google Scholar 

  49. S. Kettemann, R. Mazzarello, Phys. Rev. B 65(8), 085318 (2002). DOI 10.1103/PhysRevB.65.085318

    Google Scholar 

  50. D. Stich, J.H. Jiang, T. Korn, R. Schulz, D. Schuh, W. Wegscheider, M.W. Wu, C. Schüller, Phys. Rev. B 76(7), 073309 (2007). DOI 10.1103/PhysRevB.76.073309

    Google Scholar 

  51. A.W. Holleitner, V. Sih, R.C. Myers, A.C. Gossard, D.D. Awschalom, Phys. Rev. Lett. 97(3), 036805 (2006). DOI 10.1103/PhysRevLett.97.036805

    Article  Google Scholar 

  52. A.W. Holleitner, V. Sih, R.C. Myers, A.C. Gossard, D.D. Awschalom, New J. Phys. 9, 342 (2007)

    Article  Google Scholar 

  53. A. Wirthmann, Y.S. Gui, C. Zehnder, D. Heitmann, C.M. Hu, S. Kettemann, Physica E 34, 493 (2006). DOI 10.1016/j.physe.2006.03.062

    Article  Google Scholar 

  54. R. Dinter, S. Löhr, S. Schulz, C. Heyn, W. Hansen, (2005)

    Google Scholar 

  55. P. Lehnen, T. Schäpers, N. Kaluza, N. Thillosen, H. Hardtdegen, Phys. Rev. B 76(20), 205307 (2007). DOI 10.1103/PhysRevB.76.205307

    Google Scholar 

  56. S. Iordanskii, Y. Lyandageller, G. Pikus, J. Exp. Theor. Phys. Lett. 60(3), 206 (1994)

    Google Scholar 

  57. Y. Kunihashi, M. Kohda, J. Nitta, Phys. Rev. Lett. 102(22), 226601 (2009). DOI 10.1103/PhysRevLett.102.226601

    Article  Google Scholar 

  58. C.W.J. Beenakker, Rev. Mod. Phys. 69(3), 731 (1997). DOI 10.1103/RevModPhys.69.731

    Article  Google Scholar 

  59. W. Gerlach, O. Stern, Z. Phys. A 9, 349 (1922)

    Google Scholar 

  60. J. Ohe, M. Yamamoto, T. Ohtsuki, J. Nitta, Phys. Rev. B 72(4), 041308 (2005). DOI 10.1103/PhysRevB.72.041308

    Google Scholar 

  61. M. Yamamoto, Ph.D. thesis, University of Hamburg, 2007. URL http://physik.uni-hamburg.de/services/fachinfo/dissfb12_2007.html

  62. T. Ando, Phys. Rev. B 44(15), 8017 (1991). DOI 10.1103/PhysRevB.44.8017

    Google Scholar 

  63. M. Yamamoto, T. Ohtsuki, B. Kramer, Phys. Rev. B 72(11), 115321 (2005). DOI 10.1103/PhysRevB.72.115321

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Wenk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wenk, P., Yamamoto, M., Ohe, Ji., Ohtsuki, T., Kramer, B., Kettemann, S. (2010). Spin Polarized Transport and Spin Relaxation in Quantum Wires. In: Heitmann, D. (eds) Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10553-1_11

Download citation

Publish with us

Policies and ethics