Advertisement

Laser Synthesis of Nanomaterials

  • Sébastien Besner
  • Michel Meunier
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 135)

Abstract

We present an overview of the basic principles and applications of laser-based synthesis of nanomaterials. Pulsed laser ablation (PLA) of a bulk solid leads to the formation of nanoparticles having essentially the target composition.When performed in vacuum or in a gas, the ejected clusters may accumulate on a subtrate, thus producing a nanostructured thin film. In liquids, it produces a colloidal solution. Laser interaction with micro/nanomaterials that are embedded in a solid or suspended in either a liquid or a gas is capable to melt and/or fragment the materials and/or induce the formation of new nanostructures and alloys. For these approaches, a detailed description of the mechanisms of laser ablation and nanoparticles growth is given.

Keywords

Laser Ablation Femtosecond Laser Femtosecond Laser Pulse Cavitation Bubble Plasma Plume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BCC Research, Nanostructured Materials for the Biomedical, Pharmaceutical, & Cosmetic Markets, NAN017D (2007)Google Scholar
  2. 2.
    T.H. Maiman, Nature 187, 493 (1960)ADSCrossRefGoogle Scholar
  3. 3.
    D. Bäuerle, Laser processing and chemistry, 3rd edn. (Springer, Berlin, 2000)Google Scholar
  4. 4.
    J.F. Ready, D.F. Farson (eds.), LIA handbook of laser materials processing, 1st edn. (Laser Institute of America; Magnolia Publishing, Orlando, FL, 2001)Google Scholar
  5. 5.
    D.B. Chrisey, G.K. Hubler (eds.), Pulsed laser deposition of thin films, 1st edn. (Wiley, New York, Toronto, 1994)Google Scholar
  6. 6.
    R. Eason, Pulsed laser deposition of thin films: applications-led growth of functional materials, 1st edn. (Wiley, Hoboken, NJ, 2007)Google Scholar
  7. 7.
    M.H. Niemz, Laser-tissue interactions: fundamentals and applications, 2nd rev. edn. (Springer, Berlin, 2002)Google Scholar
  8. 8.
    M. Braun, P. Gilch, W. Zinth, Ultrashort Laser Pulses in Biology and Medicine, 1st edn. (Springer, Berlin, 2008)Google Scholar
  9. 9.
    P.N. Prasad, Introduction to biophotonics, 1st edn. (Wiley, Hoboken, NJ, 2003)Google Scholar
  10. 10.
    A.V. Kabashin, M. Meunier, in Recent advances in laser processing of materials, ed. by J. Perrière, É. Millon, É. Fogarassy (European Materials Research Society: Elsevier, Amsterdam, 2006), p. 1Google Scholar
  11. 11.
    R. Hergenroder, Spectrochim. Acta B 61, 284 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    G.W. Yang, Prog. Mater. Sci. 52, 648 (2007)CrossRefGoogle Scholar
  13. 13.
    O. Masala, R. Seshadri, Ann. Rev. Mater. Res. 34, 41 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Z.Y. Zhong, K.B. Male, J.H.T. Luong, Anal. Lett. 36, 3097 (2003)CrossRefGoogle Scholar
  15. 15.
    J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, Chem. Rev. 107, 2228 (2007)CrossRefGoogle Scholar
  16. 16.
    M.S. Tillack, D.W. Blair, S.S. Harilal, Nanotechnology 15, 390 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    J.H. Yoo, O.V. Borisov, X.L. Mao, R.E. Russo, Anal. Chem. 73, 2288 (2001)CrossRefGoogle Scholar
  18. 18.
    G. Bekefi, Principles of Laser Plasmas, 1st edn. (Wiley, New York, 1976)Google Scholar
  19. 19.
    A. Takahashi, K. Nishijima, Jpn. J. Appl. Phys. 37(1), 313 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Y.B. Zeldovich, Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, 1st edn. (Academic, New York, 1967)Google Scholar
  21. 21.
    A. Bogaerts, Z.Y. Chen, Spectrochim. Acta B 60, 1280 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    J.G. Lunney, R. Jordan, Appl. Surf. Sci. 127, 941 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A-Mater 73, 199 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    M.A. Shannon, et al., Anal. Chem. 67, 4522 (1995)CrossRefGoogle Scholar
  25. 25.
    A. Dupont, P. Caminat, P. Bournot, J.P. Gauchon, J. Appl. Phys. 78, 2022 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    S. Zhu, Y.F. Lu, M.H. Hong, Appl. Phys. Lett. 79, 1396 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    A. Vogel, et al., Appl. Phys. B-Lasers O. 68, 271 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    F. Mafune, et al., J. Phys. Chem. B 104, 9111 (2000)CrossRefGoogle Scholar
  29. 29.
    C. Porneala, D.A. Willis, Appl. Phys. Lett. 89, 3 (2006)CrossRefGoogle Scholar
  30. 30.
    A. Miotello, R. Kelly, Appl. Phys. Lett. 67, 3535 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    A. Miotello, R. Kelly, Appl. Phys. A-Mater 69, S67 (1999)ADSGoogle Scholar
  32. 32.
    R. Kelly, A. Miotello, Nucl. Instrum. Meth B 122, 374 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    J.H. Yoo, et al., Appl. Phys. Lett. 76, 783 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. B 73, 22 (2006)CrossRefGoogle Scholar
  35. 35.
    C. Korner, R. Mayerhofer, M. Hartmann, H.W. Bergmann, Appl. Phys. A-Mater 63, 123 (1996)ADSGoogle Scholar
  36. 36.
    S.H. Jeong, et al., Anal. Chem. 71, 5123 (1999)CrossRefGoogle Scholar
  37. 37.
    B.C. Stuart, et al., J. Opt. Soc. Am. B 13, 459 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    B.N. Chichkov, et al., Appl. Phys. A-Mater 63, 109 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    W.S. Fann, R. Storz, H.W.K. Tom, J. Bokor, Phys. Rev. B 46, 13592 (1992)ADSCrossRefGoogle Scholar
  40. 40.
    C.K. Sun, et al., Phys. Rev. B 50, 15337 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    S.S. Wellershoff, J. Hohlfeld, J. Gudde, E. Matthias, Appl. Phys. A-Mater 69, S99 (1999)ADSGoogle Scholar
  42. 42.
    J. Hohlfeld, et al., Chem. Phys. 251, 237 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    S. Nolte, et al., J. Opt. Soc. Am. B 14, 2716 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    N.N. Nedialkov, S.E. Imamova, P.A. Atanasov, J. Phys. D Appl. Phys. 37, 638 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    J. Yang, et al., Phys. Rev. B 76, 165430 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. Lett. 91, 225502 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    J. Perriere, C. Boulmer-Leborgne, R. Benzerga, S. Tricot, J. Phys. D Appl. Phys. 40, 7069 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    S. Amoruso, et al., Appl. Phys. Lett. 84, 4502 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    S. Amoruso, et al., J. Phys. B-At. Mol. Opt. 38, L329 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    S. Noel, J. Hermann, T. Itina, Appl. Surf. Sci. 253, 6310 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    S. Amoruso, R. Bruzzese, X. Wang, J. Xia, Appl. Phys. Lett. 92, 3 (2008)CrossRefGoogle Scholar
  52. 52.
    S. Amoruso, et al., J. Phys. D Appl. Phys. 40, 331 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    M.E. Povarnitsyn, et al., Phys. Rev. B 75, 235414 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    L.J. Lewis, D. Perez, Appl. Surf. Sci. (in press) DOI:10.1016/j.apsusc.2008.07.116Google Scholar
  55. 55.
    S. Amoruso, et al., Phys. Rev. B 71, 4 (2005)CrossRefGoogle Scholar
  56. 56.
    E. Millon, et al., Appl. Phys. A-Mater 77, 73 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A-Mater 79, 1643 (2004)ADSGoogle Scholar
  58. 58.
    B.S. Luk’yanchuk, W. Marine, S.I. Anisimov, G.A. Simakina, Proc. SPIE 3618, 434 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    M. Kuwata, B. Luk’Yanchuk, T. Yabe, Jpn. J. Appl. Phys. 1 40, 4262 (2001)Google Scholar
  60. 60.
    T.E. Itina, M. Sentis, W. Marine, Appl. Surf. Sci. 252, 4433 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    T.E. Itina, et al., Appl. Surf. Sci. 253, 7656 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    R. Hergenroder, J. Anal, Atom. Spectrom. 21, 1016 (2006)CrossRefGoogle Scholar
  63. 63.
    A. Bailini, P.M. Ossi, A. Rivolta, Appl. Surf. Sci. 253, 7682 (2007)ADSCrossRefGoogle Scholar
  64. 64.
    C.X. Wang, P. Liu, H. Cui, G.W. Yang, Appl. Phys. Lett. 87, 201913 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    R. Fabbro, et al., J. Appl. Phys. 68, 775 (1990)ADSCrossRefGoogle Scholar
  66. 66.
    L. Berthe, et al., J. Appl. Phys. 82, 2826 (1997)ADSCrossRefGoogle Scholar
  67. 67.
    H.R. Pakhal, R.P. Lucht, N.M. Laurendeau, Appl. Phys. B-Lasers O. 90, 15 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    R.E. Russo, et al., Appl. Phys. A-Mater A69, 887 (1999)ADSGoogle Scholar
  69. 69.
    T.E. Glover, J. Opt, Soc. Am. B 20, 125 (2003)ADSCrossRefGoogle Scholar
  70. 70.
    X. Zeng, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. A-Mater 80, 237 (2005)ADSCrossRefGoogle Scholar
  71. 71.
    N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A-Mater A69, 87 (1999)ADSGoogle Scholar
  72. 72.
    S.S. Harilal, et al., J. Appl. Phys. 93, 2380 (2003)ADSCrossRefGoogle Scholar
  73. 73.
    S.B. Wen, X.L. Mao, R. Greif, R.F. Russo, J. Appl. Phys. 100, 14 (2006)Google Scholar
  74. 74.
    H.S. Park, S.H. Nam, S.M. Park, J. Appl. Phys. 97, 5 (2005)Google Scholar
  75. 75.
    D. Kashchiev, Nucleation: Basic Theory with Applications, 1st edn. (Butterworth-Heinemann, Oxford, 2000)Google Scholar
  76. 76.
    M.N.R. Ashfold, F. Claeyssens, G.M. Fuge, S.J. Henley, Chem. Soc. Rev. 33, 23 (2004)CrossRefGoogle Scholar
  77. 77.
    S.B. Wen, X.L. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 15 (2007)Google Scholar
  78. 78.
    T. Yoshitake, G. Shiraishi, K. Nagayama, Appl. Surf. Sci. 197, 379 (2002)ADSCrossRefGoogle Scholar
  79. 79.
    E.V. Pechen, et al., Appl. Phys. Lett. 66, 2292 (1995)ADSCrossRefGoogle Scholar
  80. 80.
    E. Agostinelli, S. Kaciulis, M. Vittori-Antisari, Appl. Surf. Sci. 156, 143 (2000)ADSCrossRefGoogle Scholar
  81. 81.
    Z. Trajanovic, S. Choopun, R.P. Sharma, T. Venkatesan, Appl. Phys. Lett. 70, 3461 (1997)ADSCrossRefGoogle Scholar
  82. 82.
    J. Perriere, et al., J. Appl. Phys. 91, 690 (2002)ADSCrossRefGoogle Scholar
  83. 83.
    D.P. Norton, et al., Appl. Phys. Lett. 74, 2134 (1999)ADSCrossRefGoogle Scholar
  84. 84.
    D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Appl. Phys. Lett. 72, 2987 (1998)ADSCrossRefGoogle Scholar
  85. 85.
    A.V. Kabashin, J.P. Sylvestre, S. Patskovsky, M. Meunier, J. Appl. Phys. 91, 3248 (2002)ADSCrossRefGoogle Scholar
  86. 86.
    X.Y. Chen, et al., J. Appl. Phys. 93, 6311 (2003)ADSCrossRefGoogle Scholar
  87. 87.
    U. Ozgur, et al., J. Appl. Phys. 98, 103 (2005)Google Scholar
  88. 88.
    J. Roder, J. Faupel, H.U. Krebs, Appl. Phys. A-Mater 93, 863 (2008)ADSCrossRefGoogle Scholar
  89. 89.
    N. Benchikh, et al., Surf. Coat. Tech. 200, 6272 (2006)CrossRefGoogle Scholar
  90. 90.
    S. Bouhtiyya, L. Roue, Int. J. Hydrogen. Energ. 33, 2912 (2008)CrossRefGoogle Scholar
  91. 91.
    D.H. Lowndes, et al., Appl. Surf. Sci. 127, 355 (1998)ADSCrossRefGoogle Scholar
  92. 92.
    D.H. Lowndes, et al., J. Mater. Res. 14, 359 (1999)ADSCrossRefGoogle Scholar
  93. 93.
    J. Koch, A. von Bohlen, R. Hergenroder, K. Niemax, J. Anal. Atom. Spectrom. 19, 267 (2004)CrossRefGoogle Scholar
  94. 94.
    C. Huang, et al., J. Appl. Phys. 101, 11 (2007)Google Scholar
  95. 95.
    O. Albert, et al., Appl. Phys. A-Mater 76, 319 (2003)ADSCrossRefGoogle Scholar
  96. 96.
    G.M. Fuge, M.N.R. Ashfold, S.J. Henley, J. Appl. Phys. 99, 12 (2006)CrossRefGoogle Scholar
  97. 97.
    X.L. Tong, D.S. Jiang, L. Liu, H. Dai, J. Vac. Sci. Technol. B 26, 1398 (2008)CrossRefGoogle Scholar
  98. 98.
    A. De Giacomo, M. Dell’Aglio, A. Santagata, R. Teghil, Spectrochim. Acta B 60, 935 (2005)ADSCrossRefGoogle Scholar
  99. 99.
    A. Giardini, et al., Appl. Surf. Sci. 252, 4632 (2006)ADSCrossRefGoogle Scholar
  100. 100.
    J. Koch, et al., Spectrochim. Acta B 62, 20 (2007)ADSCrossRefGoogle Scholar
  101. 101.
    Z. Zhang, P.A. VanRompay, J.A. Nees, P.P. Pronko, J. Appl. Phys. 92, 2867 (2002)ADSCrossRefGoogle Scholar
  102. 102.
    T.W. Trelenberg, et al., Appl. Surf. Sci. 221, 364 (2004)ADSCrossRefGoogle Scholar
  103. 103.
    S. Amoruso, et al., Appl. Surf. Sci. 252, 4863 (2006)ADSCrossRefGoogle Scholar
  104. 104.
    E.G. Gamaly, et al., J. Appl. Phys. 95, 2250 (2004)ADSCrossRefGoogle Scholar
  105. 105.
    S. Barcikowski, A. Hahn, A.V. Kabashin, B.N. Chichkov, Appl. Phys. A-Mater 87, 47 (2007)ADSCrossRefGoogle Scholar
  106. 106.
    J. Neddersen, G. Chumanov, T.M. Cotton, Appl. Spectrosc. 47, 1959 (1993)ADSCrossRefGoogle Scholar
  107. 107.
    A.V. Kabashin, M. Meunier, C. Kingston, J.H.T. Luong, J. Phys. Chem. B 107, 4527 (2003)CrossRefGoogle Scholar
  108. 108.
    S. Besner, A.V. Kabashin, F.M. Winnik, M. Meunier, Appl. Phys. A-Mater 93, 955 (2008)ADSCrossRefGoogle Scholar
  109. 109.
    A. Fojtik, A. Henglein, Berich. Bunsen Phys. Chem. 97, 252 (1993)Google Scholar
  110. 110.
    F. Mafune, J.y. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 106, 7575 (2002)Google Scholar
  111. 111.
    J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, Appl. Phys. A-Mater 80, 753 (2005)ADSCrossRefGoogle Scholar
  112. 112.
    S. Petersen, J. Jakobi, S. Barcikowski, Appl. Surf. Sci. (In press) DOI:10.1016/j.apsusc. 2008.08.064Google Scholar
  113. 113.
    F. Mafune, et al., J. Phys. Chem. B 105, 5114 (2001)CrossRefGoogle Scholar
  114. 114.
    A.V. Kabashin, M. Meunier, J. Appl. Phys. 94, 7941 (2003)ADSCrossRefGoogle Scholar
  115. 115.
    J.P. Sylvestre, et al., J. Phys. Chem. B 108, 16864 (2004)CrossRefGoogle Scholar
  116. 116.
    J.P. Sylvestre, et al., J. Am. Chem. Soc. 126, 7176 (2004)CrossRefGoogle Scholar
  117. 117.
    A.V. Kabashin, M. Meunier, J. Phys. Conf. Ser. 59, 354 (2007)ADSCrossRefGoogle Scholar
  118. 118.
    A.V. Kabashin, M. Meunier, J. Photoch. Photobio. A 182, 330 (2006)CrossRefGoogle Scholar
  119. 119.
    S. Besner, A.V. Kabashin, F.M. Winnik, M. Meunier, J. Phys. Chem. C 113, 9526 (2009)CrossRefGoogle Scholar
  120. 120.
    F. Mafune, et al., J. Phys. Chem. B 104, 8333 (2000)CrossRefGoogle Scholar
  121. 121.
    G.A. Shafeev, E. Freysz, F. Bozon-Verduraz, Appl. Phys. A-Mater A78, 307 (2004)ADSGoogle Scholar
  122. 122.
    A. Pyatenko, et al., Appl. Phys. A-Mater 79, 803 (2004)ADSGoogle Scholar
  123. 123.
    T. Tsuji, T. Kakita, M. Tsuji, Appl. Surf. Sci. 206, 314 (2003)ADSCrossRefGoogle Scholar
  124. 124.
    T. Tsuji, et al., Appl. Surf. Sci. 254, 5224 (2008)ADSCrossRefGoogle Scholar
  125. 125.
    J.S. Jeon, C.S. Yeh, J. Chin. Chem. Soc.-Taip 45, 721 (1998)Google Scholar
  126. 126.
    T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji, Appl. Surf. Sci. 202, 80 (2002)ADSCrossRefGoogle Scholar
  127. 127.
    M. Prochazka, et al., Anal. Chem. 69, 5103 (1997)CrossRefGoogle Scholar
  128. 128.
    Y.H. Chen, C.S. Yeh, Colloid Surf. A 197, 133 (2002)CrossRefGoogle Scholar
  129. 129.
    M. Prochazka, et al., J. Mol. Struc. 410, 213 (1997)ADSCrossRefGoogle Scholar
  130. 130.
    F. Mafune, J.y. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 107, 4218 (2003)Google Scholar
  131. 131.
    W.T. Nichols, T. Sasaki, N. Koshizaki, J. Appl. Phys. 100, 114913 (2006)ADSCrossRefGoogle Scholar
  132. 132.
    W.T. Nichols, T. Sasaki, N. Koshizaki, J. Appl. Phys. 100, 114912 (2006)ADSCrossRefGoogle Scholar
  133. 133.
    W.T. Nichols, T. Sasaki, N. Koshizaki, J. Appl. Phys. 100, 114911 (2006)ADSCrossRefGoogle Scholar
  134. 134.
    Z. Jin, C.Q. Lan, Mater. Lett. 62, 1521 (2008)CrossRefGoogle Scholar
  135. 135.
    S.K. Yang, W.P. Cai, H.B. Zeng, Z.G. Li, J. Appl. Phys. 104, 5 (2008)Google Scholar
  136. 136.
    W. Gong, et al., J. Appl. Phys. 102, 064304 (2007)ADSCrossRefGoogle Scholar
  137. 137.
    K.V. Anikin, et al., Chem. Phys. Lett. 366, 357 (2002)ADSCrossRefGoogle Scholar
  138. 138.
    O.R. Musaev, et al., Physica E 40, 3147 (2008)ADSCrossRefGoogle Scholar
  139. 139.
    P.S. Liu, W.P. Cai, H.B. Zeng, J. Phys. Chem. C 112, 3261 (2008)CrossRefGoogle Scholar
  140. 140.
    Z. Haibo, et al., J. Phys. Chem. B 109, 18260 (2005)CrossRefGoogle Scholar
  141. 141.
    S.C. Singh, R. Gopal, J. Phys. Chem. C 112, 2812 (2008)CrossRefGoogle Scholar
  142. 142.
    C. He, et al., J. Photoch. Photobio. A 191, 66 (2007)CrossRefGoogle Scholar
  143. 143.
    T. Sasaki, et al., Appl. Phys. A-Mater 79, 1489 (2004)ADSGoogle Scholar
  144. 144.
    C.H. Liang, Y. Shimizu, T. Sasaki, N. Koshizaki, Appl. Phys. A-Mater 80, 819 (2005)ADSCrossRefGoogle Scholar
  145. 145.
    L. Yang, et al., J. Nanopart. Res. 9, 1181 (2007)CrossRefGoogle Scholar
  146. 146.
    Q.X. Liu, C.X. Wang, G.W. Yang, Phys. Rev. B 71, 155422 (2005)ADSCrossRefGoogle Scholar
  147. 147.
    G. Compagnini, A.A. Scalisi, O. Puglisi, Phys. Chem. Chem. Phys. 4, 2787 (2002)CrossRefGoogle Scholar
  148. 148.
    T. Tsuji, Y. Okazaki, Y. Tsuboi, M. Tsuji, Jpn. J. Appl. Phys. 1 46, 1533 (2007)Google Scholar
  149. 149.
    L. Berthe, R. Fabbro, P. Peyre, E. Bartnicki, J. Appl. Phys. 85, 7552 (1999)ADSCrossRefGoogle Scholar
  150. 150.
    L. Berthe, et al., J. Phys. D Appl. Phys. 33, 2142 (2000)ADSCrossRefGoogle Scholar
  151. 151.
    B.X. Wu, Y.C. Shin, J. Appl. Phys. 101, 103514 (2007)ADSCrossRefGoogle Scholar
  152. 152.
    T. Sakka, et al., J. Chem. Phys. 112, 8645 (2000)ADSCrossRefGoogle Scholar
  153. 153.
    K. Saito, K. Takatani, T. Sakka, Y.H. Ogata, Appl. Surf. Sci. 197, 56 (2002)ADSCrossRefGoogle Scholar
  154. 154.
    B.X. Wu, Appl. Phys. Lett. 93, 3 (2008)Google Scholar
  155. 155.
    H. Oguchi, T. Sakka, Y.H. Ogata, J. Appl. Phys. 102, 23306 (2007)CrossRefGoogle Scholar
  156. 156.
    A. Sasoh, K. Watanabe, Y. Sano, N. Mukai, Appl. Phys. A-Mater 80, 1497 (2005)ADSCrossRefGoogle Scholar
  157. 157.
    D. Perez, et al., Phys. Rev. B 77, 014108 (2008)ADSCrossRefGoogle Scholar
  158. 158.
    H. Ushida, N. Takada, K. Sasaki, J. Phys. Conf. Ser. 59, 563 (2007)ADSCrossRefGoogle Scholar
  159. 159.
    Y.T. Didenko, W.B. McNamara III, K.S. Suslick, J. Am. Chem. Soc. 121, 5817 (1999)CrossRefGoogle Scholar
  160. 160.
    J. Bosbach, et al., Appl. Phys. Lett. 74, 2605 (1999)ADSCrossRefGoogle Scholar
  161. 161.
    D.Q. Yang, M. Meunier, E. Sacher, J. Appl. Phys. 95, 5023 (2004)ADSCrossRefGoogle Scholar
  162. 162.
    H. Ouacha, C. Hendrich, F. Hubenthal, F. Trager, Appl. Phys. B-Lasers O. 81, 663 (2005)ADSCrossRefGoogle Scholar
  163. 163.
    W.T. Nichols, et al., Appl. Phys. Lett. 78, 1128 (2001)ADSCrossRefGoogle Scholar
  164. 164.
    J. Lee, et al., IEEE T. Magn. 32, 4484 (1996)ADSCrossRefGoogle Scholar
  165. 165.
    G. Malyavantham, et al., J. Nanopart. Res. 6, 661 (2004)CrossRefGoogle Scholar
  166. 166.
    I. Gallardo, K. Hoffmann, J.W. Keto, Appl. Phys. A-Mater 94, 65 (2009)ADSCrossRefGoogle Scholar
  167. 167.
    M.S. Yeh, et al., J. Phys. Chem. B 103, 6851 (1999)CrossRefGoogle Scholar
  168. 168.
    J. Zhang, et al., J. Phys. Chem. B 110, 7122 (2006)CrossRefGoogle Scholar
  169. 169.
    J. Zhang, et al., J. Phys. Chem. B 107, 6920 (2003)CrossRefGoogle Scholar
  170. 170.
    M. Kawasaki, K. Masuda, J. Phys. Chem. B 109, 9379 (2005)CrossRefGoogle Scholar
  171. 171.
    M. Kawasaki, N. Nishimura, Appl. Surf. Sci. 253, 2208 (2006)ADSCrossRefGoogle Scholar
  172. 172.
    P.V. Kamat, M. Flumiani, G.V. Hartland, J. Phys. Chem. B 102, 3123 (1998)CrossRefGoogle Scholar
  173. 173.
    A. Takami, H. Kurita, S. Koda, J. Phys. Chem. B 103, 1226 (1999)CrossRefGoogle Scholar
  174. 174.
    S. Inasawa, M. Sugiyama, Y. Yamaguchi, J. Phys. Chem. B 109, 9404 (2005)CrossRefGoogle Scholar
  175. 175.
    S. Besner, A.V. Kabashin, M. Meunier, Appl. Phys. Lett. 89, 233122 (2006)ADSCrossRefGoogle Scholar
  176. 176.
    K. Yamada, Y. Tokumoto, T. Nagata, F. Mafune, J. Phys. Chem. B 110, 11751 (2006)CrossRefGoogle Scholar
  177. 177.
    S. Besner, A.V. Kabashin, M. Meunier, Appl. Phys. A-Mater 88, 269 (2007)ADSCrossRefGoogle Scholar
  178. 178.
    K. Yamada, K. Miyajima, F. Mafune, J. Phys. Chem. C 111, 11246 (2007)CrossRefGoogle Scholar
  179. 179.
    H. Muto, K. Miyajima, F. Mafune, J. Phys. Chem. C 112, 5810 (2008)CrossRefGoogle Scholar
  180. 180.
    X.L. Zheng, et al., J. Phys. Chem. C 111, 14962 (2007)CrossRefGoogle Scholar
  181. 181.
    R.C. Jin, et al., Nature 425, 487 (2003)ADSCrossRefGoogle Scholar
  182. 182.
    C.M. Aguirre, C.E. Moran, J.F. Young, N.J. Halas, J. Phys. Chem. B 108, 7040 (2004)CrossRefGoogle Scholar
  183. 183.
    S. Link, et al., Phys. Rev. B 61, 6086 (2000)ADSCrossRefGoogle Scholar
  184. 184.
    A. Pyatenko, M. Yamaguchi, M. Suzuki, J. Phys. Chem. C 111, 7910 (2007)CrossRefGoogle Scholar
  185. 185.
    G. Compagnini, E. Messina, O. Puglisi, V. Nicolosi, Appl. Surf. Sci. 254, 1007 (2007)ADSCrossRefGoogle Scholar
  186. 186.
    U. Pal, et al., Appl. Phys. A-Mater 79, 79 (2004)ADSCrossRefGoogle Scholar
  187. 187.
    Y.H. Chen, Y.H. Tseng, C.C. Yeh, J. Mater. Chem. 12, 1419 (2002)CrossRefGoogle Scholar
  188. 188.
    S.H. Tsai, Y.H. Liu, P.L. Wu, C.S. Yeh, J. Mater. Chem. 13, 978 (2003)CrossRefGoogle Scholar
  189. 189.
    W.T. Nichols, et al., J. Nanopart. Res. 4, 423 (2002)CrossRefGoogle Scholar
  190. 190.
    C.B. Stipe, et al., J. Nanopart. Res. 6, 467 (2004)CrossRefGoogle Scholar
  191. 191.
    P. Grua, et al., Phys. Rev. B 68, 12 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laser Processing Laboratory, Canada Research Chair in Laser Micro/nano-Engineering of Materials, Department of Engineering PhysicsÉcole Polytechnique de MontréalMontréalCanada

Personalised recommendations