Skip to main content

Silicon Photonic Wire Waveguides: Fundamentals and Applications

  • Chapter
  • First Online:
Silicon Photonics II

Part of the book series: Topics in Applied Physics ((TAP,volume 119))

Abstract

This chapter reviews the fundamental characteristics and basic applications of the silicon photonic wire waveguide. Thanks to its ultra-small geometrical structures and compatibility with the silicon electronics, the silicon photonic wire waveguide provides us with a highly integrated platform for electronic–photonic convergence. For the practical achievement of this platform, however, we must search for ways to reduce the propagation loss and coupling loss to external fibers and overcome the polarization dependence. Progress has been made by applying state-of-the-art technologies specially tuned to the fabrication of nanometer structures, and the fundamental propagation performance has already become a practical standard. Some passive devices, such as branches and wavelength filters, and dynamic devices based on the thermo-optic effect or carrier plasma effect have been developed by using silicon photonic wire waveguides. These waveguides also offer an efficient media for nonlinear optical functions, such as wavelength conversion. Although polarization dependence remains a serious obstacle to the practical applications of these waveguides, waveguide-based polarization manipulation devices provide us with effective solutions, such as a polarization diversity system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.-L. Bona, R. Germann, B.J. Offrein, SiON high-refractive-index waveguide and planar lightwave circuits. IBM J. Res. Dev. 47, 239–249 (2003)

    Article  Google Scholar 

  2. M.J. Kobrinsky, B.A. Block, J.-F. Zheng, B.C. Barnett, R. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, K. Cadien, On-chip optical interconnects, Intel Technol. J. 8, 129–141 (2004)

    Google Scholar 

  3. A.G. Rickman. G.T. Reed, F. Namavar, Silicon-on-insulator optical rib waveguide loss and mode characteristics. J. Lightwave Technol. 12, 1771–1776 (1994)

    Article  ADS  Google Scholar 

  4. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, M. Paniccia, An all-silicon Raman laser. Nature 433, 292–294 (2005)

    Article  ADS  Google Scholar 

  5. K.K. Lee, D.R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, L.C. Kimerling, Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model. Appl. Phys. Lett. 77, 1617–1619 (2000)

    Article  ADS  Google Scholar 

  6. A. Sakai, G. Hara, T. Baba, Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate. Jpn. J. Appl. Phys. 40, L383–L385 (2001)

    Article  ADS  Google Scholar 

  7. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, H. Morita, Microphotonics devices based on silicon wire waveguiding system. IEICE Trans. Electron. E87-C, 351–358 (2004)

    Google Scholar 

  8. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, H. Morita, Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum. Electron. 11, 232–240 (2005)

    Article  Google Scholar 

  9. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J.V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, R. Baets, Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. Photon. Technol. Lett. 16, 1328–1330 (2004)

    Article  ADS  Google Scholar 

  10. Y.A. Vlasov, S.J. McNab, Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622–1631 (2004)

    Article  ADS  Google Scholar 

  11. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, S. Itabashi, Low-loss Si wire waveguides and their application to thermooptic switches. Jpn. J. Appl. Phys. 45, 6658–6662 (2006)

    Article  ADS  Google Scholar 

  12. P. Lusse, P. Stuwe, J. Schule, H.-G Unger, Analysis of vectorial mode fields in optical waveguides by new finite difference method. J. Lightwave Technol. LT-12, 487–493 (1994)

    Article  ADS  Google Scholar 

  13. M. Koshiba, S. Maruyama, K. Hirayama, A vector finite element method with the high-order mixed-interpolation-type triangular elements for optical waveguiding problems. J. Lightwave Technol. LT-12, 495–502 (1994)

    Article  ADS  Google Scholar 

  14. A.S. Sudbo, Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides. Pure Appl. Opt. 2, 211–233 (1993)

    Article  ADS  Google Scholar 

  15. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, New York, 2000), p. 29

    Google Scholar 

  16. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, R. Baets, Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE J. Sel. Top. Quantum. Electron. 12, 1394–1401 (2006)

    Article  Google Scholar 

  17. F.P. Payne, J.P.R. Lacey, A theoretical analysis of scattering lossfrom planar optical wavewguide. Opt. Quantum. Electron. 26, 977–986 (1994)

    Article  Google Scholar 

  18. S. Janz, in Silicon-Based Waveguide Technology for Wavelength Division Multiplexing, ed. by L. Pavesi, D. Lockwood. Silicon Photonics. Top. Appl. Phys. 94 (Springer-Verlag, Berlin, 2004), p. 323

    Google Scholar 

  19. FIMMWAVE Software, Photon Design [Online]. Available: www.photond.com

  20. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres. Electron. Lett. 38, 1669–1670 (2002)

    Article  Google Scholar 

  21. Y. Hibino, Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs. IEEE J. Sel. Top. Quantum. Electron. 8, 1090–1101 (2002)

    Article  Google Scholar 

  22. D. Taillaert, F. van Laere, M. Ayre, W. Bogaaerts, D. van Thourhout, P. Bienstman, R. Baets, Grating couplers for coupling between optical fibers and nanophotonic waveguides. Jpn. J. Appl. Phys. 45, 6071–6077 (2006)

    Article  ADS  Google Scholar 

  23. T. Watanabe, K. Yamada, T. Tsuchizawa, H. Fukuda, H. Shinojima, S. Itabashi, Si wire waveguide devices. Proc. SPIE 6775, 67750 K (2007)

    ADS  Google Scholar 

  24. K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, F. Cerrina, Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Opt. Lett. 26, 1888–1890 (2001)

    Article  ADS  Google Scholar 

  25. K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, S. Itabashi, Fabrication and other related technologies for silicon photonic wire waveguides. Rev. Laser Eng. (in Japanese) 35, 550–555 (2007)

    Google Scholar 

  26. F. Xia, M. Rooks, L. Sekaric, Y. Vlasov, Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express 15, 11934–11941 (2007)

    Article  ADS  Google Scholar 

  27. F. Ohno, K. Sasaki, A. Motegi, T. Baba, Reduction in sidelobe level in ultracompact arrayed waveguide grating demultiplexer based on Si wire waveguide. Jpn. J. Appl. Phys. 45, 6126–6131 (2006)

    Article  ADS  Google Scholar 

  28. K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi, Silicon-wire-based ultrasmall lattice filters with wide fre spectral ranges. Opt. Lett. 28, 1663–1664 (2004)

    Article  ADS  Google Scholar 

  29. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, H. Morita, Silicon wire waveguiding system: fundamental characteristics and applications. Electron. Commun. Jpn Part 2, 89, 42–55 (2006)

    Article  Google Scholar 

  30. G. Cocorullo, I Rendina, Thermo-optical modulation at 1.5 μm in silicon etalon. Electron. Lett. 28, 83–85 (1992)

    Article  Google Scholar 

  31. R. Kasahara, K. Watanabe, M. Itoh, Y. Inoue, A. Kaneko, Extremely low power consumption thermooptic switch (0.6 mW) with suspended ridge and silicon-silica hybrid waveguide structures. Proc 34th Eur. Conf. Opt. Commun. 5, 55–56 (2008), Brussels

    Google Scholar 

  32. R.A. Soref, B.R. Bennett, Electrooptical effects in silicon. IEEE J. Quantum Electron. QE-23, 123–129 (1987)

    Article  ADS  Google Scholar 

  33. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, Micrometre-scale silicon electro-optic modulator, Nature 435, 325–327 (2005)

    Article  ADS  Google Scholar 

  34. K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, S. Itabashi, Applications of low-loss silicon photonic wire waveguides with carrier injection structures. Proc. 4th Intern. Conf. Group IV Photon., 116–118 (2007), Tokyo

    Google Scholar 

  35. W.M.J. Green, M.J. Rooks, L. Sekaric, Y.A. Vlasov, Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 15, 17106–17113 (2007)

    Article  ADS  Google Scholar 

  36. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.Takahashi, S. Itabashi, Four-wave mixing in silicon wire waveguides. Opt. Express 13, 4629–4637 (2005)

    Article  ADS  Google Scholar 

  37. T.K. Liang, L.R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G.R.A. Priem, D. Van Thourhout, P. Dumon, R. Baets, H.K. Tsang, Ultrafast all-optical switching by crossabsorption modulation in silicon wire waveguides. Opt. Express 13, 7298–7303 (2005)

    Article  ADS  Google Scholar 

  38. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, S. Itabashi, All-optical efficient wavelength conversion using silicon photonic wire waveguide. IEEE Photon. Technol. Lett. 18, 1046–1048 (2006)

    Article  ADS  Google Scholar 

  39. M.A. Foster, A.C. Turner, J.E. Sharping, B.S. Schmidt, M. Lipson, A.L. Gaeta, Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006)

    Article  ADS  Google Scholar 

  40. Q. Xu, R. Almeida, M. Lipson, Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide. Opt. Lett. 30, 35–37 (2005)

    Article  ADS  Google Scholar 

  41. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, Generation of polarization entangled photon pairs using silicon wire waveguide. Appl. Phys. Lett. 91, 20118 (2007)

    Article  Google Scholar 

  42. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, Generation of polarization entangled photon pairs using silicon wire waveguide. Opt. Express 16, 5721–5727 (2008)

    Article  ADS  Google Scholar 

  43. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, Generation of high-purity entangled photon pairs using silicon wire waveguide. Opt. Express 16, 20368–20373 (2008)

    Article  ADS  Google Scholar 

  44. O. Tadanaga, M. Asobe, H. Miyazawa, Y. Nishida, H. Suzuki, Efficient 1.55 μm-band quasi-phase-matched ZnO-doped LiNbO wavelength converter with high damage resistance. Electron. Lett. 39, 1525–1575 (2003)

    Article  Google Scholar 

  45. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, E. Pluk, A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Opt. Express 15, 1567–1578 (2007)

    Article  ADS  Google Scholar 

  46. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, Silicon photonic circuit with polarization diversity. Opt. Express 16, 4872–4880 (2008)

    Article  ADS  Google Scholar 

  47. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, Ultrasmall polarization splitter based on siliconwire waveguides. Opt. Express 14, 12401–12408 (2006)

    Article  ADS  Google Scholar 

  48. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, Polarization rotator based on silicon wire waveguides. Opt. Express 16, 2628–2635 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamada, K. (2011). Silicon Photonic Wire Waveguides: Fundamentals and Applications. In: Lockwood, D., Pavesi, L. (eds) Silicon Photonics II. Topics in Applied Physics, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10506-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10506-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10505-0

  • Online ISBN: 978-3-642-10506-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics