Skip to main content

Hardware–Software Integrated Silicon Photonics for Computing Systems

  • Chapter
  • First Online:
Silicon Photonics III

Part of the book series: Topics in Applied Physics ((TAP,volume 122))

Abstract

A wealth of high-bandwidth and energy-efficient silicon photonic devices have been demonstrated in recent years. These represent promising solutions for high-performance computer systems that need to distribute extremely large amounts of data in an energy-efficient manner. Chip-scale optical interconnects that employ novel silicon photonics devices can potentially leapfrog the performance of traditional electronic-interconnected systems. However, the benefits of silicon photonics at a system level have yet to be realized. This chapter reviews methodologies for integrating silicon photonic interconnect technologies with computing systems , including implementation challenges associated with device characteristics. A fully functional co-integrated hardware–software system needs to encompass device functionality, control schema, and software logic seamlessly. Each layer, ranging from individual device characterization, to higher layer control of multiple devices, to arbitration of networks of devices, and ultimately to encapsulation of subsystems to create the entire computing system is explored. Finally, results and implications at each level of the system stack are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Shacham, K. Bergman, L.P. Carloni, Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. 57(9), 1246–1260 (2008)

    Article  MathSciNet  Google Scholar 

  2. AE-J. Lim et al., Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014)

    Google Scholar 

  3. A. Novack et al., A 30 GHz silicon photonic platform, in Technical Digest of 2013 IEEE 10th International Conference on Group IV Photonics, pp. 7–8 (2013)

    Google Scholar 

  4. N. Pavarelli et al., Optical and electronic packaging process for silicon photonic systems, in European Conference on Optical Communication (ECOC), Tu.1.1.3 (2014)

    Google Scholar 

  5. J. Pan, P. Fraud, Wire bonding challenges in optoelectronics packaging, in Proceedings of 1st SME Annual Manufacturing Technology Summit (Dearborn, MI, 2004)

    Google Scholar 

  6. D. Liang, J.E. Bowers, Recent progress in lasers on silicon. Nat. Photonics 4(8), 511–517 (2010)

    Article  ADS  Google Scholar 

  7. J. Liu et al., Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat. Photonics 2(7), 433–437 (2008)

    Article  Google Scholar 

  8. K. Padmaraju, X. Zhu, L. Chen, M. Lipson, K. Bergman, intermodulation crosstalk characteristics of WDM silicon microring modulators. IEEE Photonics Technol. Lett. 26(14), 1478–1481 (2014)

    Article  Google Scholar 

  9. S. Han et al., Large-scale silicon photonic switches with movable directional couplers. Optica 2(4), 370–375 (2015)

    Article  Google Scholar 

  10. L. Xu et al., 40-Gb/s DPSK data transmission through a silicon microring switch. IEEE Photonics Technol. Lett. 24(6), 473–475 (2012)

    Article  ADS  Google Scholar 

  11. R.R. Grote et al., 10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm. IEEE Photonics Technol. Lett. 25(1), 67–70 (2013)

    Article  ADS  Google Scholar 

  12. K. Bergman, G. Hendry, P. Hargrove, J. Shalf, B. Jacob, K.S. Hemmert, A. Rodrigues, D. Resnick, Let there be light!: the future of memory systems is photonics and 3D stacking, in Proceedings 2001 ACM SIGPLAN Workshop Memory Systems Performance and Correctness, pp. 43–48 (2011)

    Google Scholar 

  13. D.M. Calhoun et al., dynamic reconfiguration of silicon photonic circuit switched interconnection networks, in Proceedings of 2014 18th IEEE High Performance Extreme Computing Conference (HPEC), p. 108 (2014)

    Google Scholar 

  14. J. Altet, W. Claeys, S. Dilhaire, A. Rubio, Dynamic surface temperature measurements in ICs. Proc. IEEE 94(8), 1519–1533 (2006)

    Article  Google Scholar 

  15. K. Padmaraju, D.F. Logan, X. Zhu, J.J. Ackert, A.P. Knights, K. Bergman, Integrated thermal stabilization of a microring modulator. Opt. Express 21(12), 14342–14350 (2013)

    Article  ADS  Google Scholar 

  16. K. Padmaraju, J. Chan, L. Chen, M. Lipson, K. Bergman, Thermal stabilization of a microring modulator using feedback control. Opt. Express 20(27), 27999–28008 (2012)

    Article  ADS  Google Scholar 

  17. K. Padmaraju, K. Bergman, Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 3(4–5), 269–281 (2014)

    Google Scholar 

  18. K. Padmaraju, D.F. Logan, T. Shiraishi, J.J. Ackert, A.P. Knights, K. Bergman, Wavelength locking and thermally stabilizing microring resonators using dithering signals. IEEE J. Lightwave Technol. 32(3), 505–512 (2014)

    Article  ADS  Google Scholar 

  19. S. Yang et al., Thermal stabilization of a microring resonator using bandgap temperature sensor, in Proceedings of 2015 IEEE Optical Interconnects Conference, TuB3 (2015)

    Google Scholar 

  20. W.A. Zortman et al., Bit-error-rate monitoring for active wavelength control of resonant modulators. IEEE Micro 33(1), 42–52 (2013)

    Article  Google Scholar 

  21. X. Zhu, K. Padmaraju, L.W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, K. Bergman, Fast wavelength locking of a microring resonator. IEEE Photonics Technol. Lett. 26(23), 2365–2368 (2014)

    Article  ADS  Google Scholar 

  22. K. Padmaraju et al., wavelength locking of a WDM silicon microring demultiplexer using dithering signals, in Proceedings of 2014 Optical Fiber Communications Conference (OFC), Tu2E.4 (2014)

    Google Scholar 

  23. P. Dong, L. Chen, Y.-K. Chen, High-speed low-voltage single-drive push-pull silicon Mach–Zehnder modulators. Opt. Express 20(6), 6163–6169 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  24. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, J. Yu, High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt. Express 21(4), 4116–4125 (2013)

    Article  ADS  Google Scholar 

  25. D.J. Thomson et al., 50-Gb/s silicon optical modulator. IEEE Photonics Technol. Lett. 24(4), 234–236 (2012)

    Article  ADS  Google Scholar 

  26. R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A.E. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, M. Hochberg, High-speed silicon modulator with slow-wave electrodes and fully independent differential drive. IEEE/OSA J. Lightwave Tech. 32(12), 2240–2247 (2014)

    Article  ADS  Google Scholar 

  27. N. Ophir, C. Mineo, D. Mountain, K. Bergman, Silicon photonic microring links for high-bandwidth-density, low-power chip I/O [invited]. IEEE Micro 33(1), 54–67 (2013)

    Article  Google Scholar 

  28. R. Ding et al., A compact low-power 320-Gb/s WDM transmitter based on silicon microrings. IEEE Photonics J. 6(3), 1–8 (2014)

    Article  MATH  Google Scholar 

  29. E. Timurdogan, C.M. Sorace-Agaskar, J. Sun, E.S. Hosseini, A. Biberman, M.R. Watts, An ultralow power athermal silicon modulator. Nat. Commun. 5, (2014)

    Google Scholar 

  30. P. Dong et al., Monolithic silicon photonic integrated circuits for compact 100 Gb/s coherent optical receivers and transmitters. IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014)

    Article  Google Scholar 

  31. P. Dong et al., Silicon microring modulators for advanced modulation formats, in Proceedings of 2013 Optical Fiber Communication Conference (OFC), OW4 J.2 (2013)

    Google Scholar 

  32. L. Zhang et al., Microring-based modulation and demodulation of DPSK signal. Opt. Express 15(18), 11564–11569 (2007)

    Article  ADS  Google Scholar 

  33. Q. Li et al., High-speed BPSK modulation in silicon, in IEEE Photonic Technology Letters (In Press)

    Google Scholar 

  34. K. Tanizawa et al., 32 × 32 Strictly non-blocking si-wire optical switch on ultra-small die of 11 × 25 mm2, in Proceedings of 2015 Optical Fiber Communication Conference (OFC), M2B.5 (2015)

    Google Scholar 

  35. N. Sherwood-Droz, H. Wang, L. Chen, B.G. Lee, A. Biberman, K. Bergman, M. Lipson, Optical 4 × 4 hitless slicon router for optical networks-on-chip (NoC). Opt. Express 16(20), 15915–15922 (2008)

    Article  ADS  Google Scholar 

  36. Q. Li et al., Single microring-based 2 × 2 silicon photonic crossbar switch. IEEE Photonic Technol. Lett. (In Review)

    Google Scholar 

  37. M. Bahadori, A. Gazman, S. Rumley, Q. Li, K. Bergman, Nonlinear temperature-dependent transfer characteristics of silicon photonic microring resonators, in Proceedings of the Integrated Photonics Research, Silicon and Nano Photonics (IPR) (2015)

    Google Scholar 

  38. Q. Li et al., Experimental characterization of the optical-power upper bound in a silicon microring modulator, in Proceedings of 2012 IEEE Optical Interconnects Conference, TuB5 (2012)

    Google Scholar 

  39. X. Zhu et al., Pattern-dependent performance of microring modulators, in Proceedings of Optical Fiber Conference (OFC), OM2H.6 (2013)

    Google Scholar 

  40. A. Shacham et al., Photonic NoC for DMA communications in chip multiprocessors, in Proceedings of IEEE Symposium on High Performance Interconnects (Hot Interconnects), pp. 29–36 (2007)

    Google Scholar 

  41. G. Hendry, E. Robinson, V. Gleyzer, J. Chan, L.P. Carloni, N. Bliss, K. Bergman, Circuit-switched memory access in photonic interconnection networks for high-performance embedded computing, in Proceedings of the 2010 IEEE Supercomputing Conference (SC) (2010)

    Google Scholar 

  42. P.R. Schaumont, Principles of Hardware/Software Communication, A Practical Introduction to Hardware/Software Codesign, 2nd edn. (Springer, New York, 2013), pp. 269–284

    Book  Google Scholar 

  43. A. Shacham, B.A. Small, O. Liboiron-Ladouceur, K. Bergman, A fully implemented 12 × 12 data vortex optical packet switching interconnection network. J. Lightwave Technol. 23(10), 3066–3075 (2005)

    Article  ADS  Google Scholar 

  44. A.S. Ahsan et al., Autonomous OSNR monitoring and cross-layer control in a mixed bit-rate and modulation format system using pilot tones, in Proceedings of 2014 Advanced Photonics for Communications Congress, NT4C.3 (2014)

    Google Scholar 

  45. S. Glisic, B. Lorenzo, Advanced wireless networks: cognitive, cooperative & opportunistic 4G technology, 2nd edn. (Wiley, England, 2009)

    Book  Google Scholar 

  46. P. Samadi, H. Guan, K. Wen, K. Bergman, A software-defined optical gateway for converged inter/intra data center networks, in Proceedings of IEEE Optical Interconnects Conference (OI), MB4 (2015)

    Google Scholar 

  47. K. Wen et al., Reuse distance based circuit replacement in silicon photonic interconnection networks for HPC, in Proceedings of IEEE Symposium on High Performance Interconnects (Hot Interconnects), pp. 49–56 (2014)

    Google Scholar 

  48. W. Zhang et al., Experimental demonstration of 10 Gigabit ethernet-based optical interconnection network interface for large-scale computing system, in Proceedings of 2011 IEEE Photonics (IPC11), WG3 (2011)

    Google Scholar 

  49. R. Hemenway, R. Grzybowski, C. Minkenberg, R. Luijten, Optical-packet-switched interconnect for supercomputer applications [Invited]. J. Opt. Network. 3(12), 900–913 (2004)

    Article  ADS  Google Scholar 

  50. T. Shiraishi et al., A reconfigurable and redundant optically-connected memory system using a silicon photonic switch, in Proceedings of 2014 Optical Fiber Communication Conference (OFC), Th2A.10 (2014)

    Google Scholar 

  51. C.P. Chen et al., Performing intelligent power distribution in a 4 × 4 silicon photonic switch fabric, in Proceedings of 2015 IEEE Optical Interconnects (OI), TuB6 (2015)

    Google Scholar 

  52. C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, BCube: a high performance, server-centric network architecture for modular data centers, in Proceedings of 2009 ACM SIGCOMM Conference, pp. 63–74 (2009)

    Google Scholar 

  53. D.M. Calhoun et al., Programmable wavelength locking and routing in a silicon-photonic interconnection network implementation, in Proceedings of Optical Fiber Communication Conference (OFC), Tu2H.3 (2015)

    Google Scholar 

  54. P.M. Kogge (ed.) et al., ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems. University of Notre Dame, CSE Department Technical Report TR-2008–13 (2008)

    Google Scholar 

Download references

Acknowledgments

The work of David M. Calhoun is supported by the Columbia Optics and Quantum Electronics IGERT Ph.D. Fellowship under NSF IGERT (DGE-1069240). The authors gratefully acknowledge support from AFOSR STTR grants FA9550-12-C-0079 and FA9550–12-C-0038. The authors gratefully acknowledge additional support for this work by the U.S. Department of Energy (DoE) National Nuclear Security Administration (NNSA) Advanced Simulation and Computing (ASC) program through contract PO1319001 and PO1426332 with Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Calhoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Calhoun, D.M. et al. (2016). Hardware–Software Integrated Silicon Photonics for Computing Systems. In: Pavesi, L., Lockwood, D. (eds) Silicon Photonics III. Topics in Applied Physics, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10503-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10503-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10502-9

  • Online ISBN: 978-3-642-10503-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics