Skip to main content

Athermal Silicon Photonics

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 122))

Abstract

Temperature-dependent change in refractive index of photonic waveguide devices is useful in several applications such as thermo-optic (TO) wavelength tuning and TO switching. The TO effect, however, becomes a significant burden in wavelength-filtering devices such as ring resonators and arrayed waveguide gratings (AWG) which need stable operation independent of ambient temperature. Precise temperature control is usually necessary for the stable functioning of the wavelength filters, and it cannot but cause the problem of high power consumption and high production cost. Silicon has a very high TO coefficient compared to silica, and the temperature dependence is one of the big hurdles that must be overcome to realize a massive commercialization of silicon photonics technology. This chapter reviews the various approaches to overcome the high temperature-dependent wavelength shift of photonic waveguide devices and discuss the possibility of athermal technology suitable for the silicon photonics industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y. Kokubun, N. Funato, M. Takizawa, Athermal waveguides for temperature-independent lightwave devices. Photon. Technol. Lett. 5, 1297–1300 (1993)

    Article  ADS  Google Scholar 

  2. Y. Kokubun, M. Takizawa, S. Taga, Three-dimensional athermal waveguides for temperature independent lightwave devices. Electron. Lett. 30, 1223–1224 (1994)

    Article  Google Scholar 

  3. Y. Kokubun, S. Yoneda, S. Matsuura, Temperature-independent optical filter at 1.55 pm wavelength using a silica-based athermal waveguide. Electron. Lett. 34, 367–369 (1998)

    Article  Google Scholar 

  4. Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, S. Sumida, Athermal silica-based arrayed-waveguide grating multiplexer. Electron. Lett. 33, 1945–1947 (1997)

    Article  Google Scholar 

  5. T. Saito, K. Nara, Y. Nekado, J. Hasegawa, K. Kashihara, 100 GHz-32ch athermal AWG with extremely low temperature dependency of center wavelength, in Proceedings of the Optical Fiber Communication Conference, MF47, Atlanta (2003)

    Google Scholar 

  6. J. Hasegawa, K. Kashihara, Ultra-low-loss athermal AWG module with a large number of channels, Furukawa Review No. 26 (2004)

    Google Scholar 

  7. P. Dumon, G. Priem, L.R. Nunes, W. Bogaerts, D.V. Thourhout, P. Bienstman, T.K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, R. Baets, Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides. Jpn. J. Appl. Phys. 45, 6589–6602 (2006)

    Article  ADS  Google Scholar 

  8. T. Baehr-Jones, M. Hochberg, C. Walker, E. Chan, D. Koshinz, W. Krug, A. Scherer, Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators. J. Lightwave Technol. 23, 4215–4221 (2005)

    Article  ADS  Google Scholar 

  9. W.N. Ye, J. Michel, L.C. Kimerling, Athermal high-index-contrast waveguide design. Photon. Technol. Lett. 20, 882–884 (2008)

    Article  ADS  Google Scholar 

  10. V. Raghunathan, W.N. Ye, J. Hu, T. Izuhara, J. Michel, L. Kimerling, Athermal operation of Silicon waveguides spectral, second order and footprint dependencies, Opt. Express 18, 17631–17639 (2010)

    Google Scholar 

  11. M. M. de Lima, Jr., R. G. Lacerda, J. Vilcarromero, and F. C. Marques, Coefficient of thermal expansion and elastic modulus of thin films, J.Appl. Phys. 86, 4936-4942 (1999)

    Google Scholar 

  12. National Physical Laboratory Kaye and Laby Table of Physical and Chemical Constants, Version 1.1, (2010), http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_5.html, and http://www.kayelaby.npl.co.uk/chemistry/3_11/3_11_1.html

  13. G.T. Jhonston, Wavelength dependence of dn/dT in infrared-transmitting semiconductor materials. Appl. Opt. 16, 1796–1797 (1977)

    Article  ADS  Google Scholar 

  14. Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967)

    Article  ADS  Google Scholar 

  15. J. Bovington, R. Wu, K.-T. Cheng, J.E. Bowers, Thermal stress implications in athermal TiO2 waveguides on a silicon substrate. Opt. Express 22, 661–666 (2014)

    Article  ADS  Google Scholar 

  16. J.-M. Lee, Influence of titania cladding on SOI grating coupler and 5 μm-radius ring resonator. Opt. Commun. 338, 101–105 (2015)

    Article  ADS  Google Scholar 

  17. J.-M. Lee, D.-J. Kim, H.-K. Ahn, S.-H. Park, G. Kim, Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer. J. Lightwave Technol. 25, 2236–2243 (2007)

    Article  ADS  Google Scholar 

  18. J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, G. Kim, Controlling temperature dependence of silicon waveguide using slot structure. Opt. Express 16, 1645–1652 (2008)

    Article  ADS  Google Scholar 

  19. V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004)

    Article  ADS  Google Scholar 

  20. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, R. Baets, Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express 17, 14627–14633 (2009)

    Article  ADS  Google Scholar 

  21. L. Wang, W. Bogaerts, P. Dumon, S.K. Selvaraja, J. Teng, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, G. Morthier, Athermal arrayed waveguide gratings in silicon-on insulator by overlaying a polymer cladding on narrowed arrayed waveguides. Appl. Opt. 51, 1251–1256 (2012)

    Article  ADS  Google Scholar 

  22. V. Raghunathan, T. Izuhara, J. Michel, L. Kimerling, Stability of polymer-dielectric bi-layers for athermal silicon photonics. Opt. Express 20, 16059–16066 (2012)

    Article  ADS  Google Scholar 

  23. P. Alipour, A.H. Atabaki, A.A. Eftekhar, A. Adibi, Titania-Clad Microresonators on SOI with athermal performance, in Proceedings of the Conference on Lasers and Electro-Optics, JThE44 , San Jose (2010)

    Google Scholar 

  24. S.S. Djordjevic, K. Shang, B. Guan, S.T.S. Cheung, L. Liao, J. Basak, H.-F. Liu, S.J.B. Yoo, CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt. Express 21, 13958–13968 (2013)

    Article  ADS  Google Scholar 

  25. M. Uenuma, T. Moooka, Temperature-independent silicon waveguide optical filter. Opt. Lett. 34, 599–601 (2009)

    Article  ADS  Google Scholar 

  26. B. Guha, A. Gondarenko, M. Lipson, Minimizing temperature sensitivity of silicon Mach–Zehnder interferometers. Opt. Express 18, 1879–1887 (2010)

    Article  ADS  Google Scholar 

  27. S. Dwivedi, H. D’heer, W. Bogaerts, A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications, Photon. Technol. Lett. 25, 2167–2170 (2013)

    Google Scholar 

  28. J.-M. Lee, M-S. Kim, C.J. Oton, M. Fournier, P. Labeye, F. Testa, CMOS-compatible Athermal 400 GHz-spaced MZI Interleaver, in Proceedings of the CLEO Pacific Rim, 25J2-2, Busan, Korea (2015)

    Google Scholar 

  29. J.R. Devore, Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 41, 416–419 (1951)

    Article  ADS  Google Scholar 

  30. M.R. Saleem, P. Silfsten, S. Honkanen, J. Turunen, Thermal properties of TiO2 films grown by atomic layer deposition. Thin Solid Films 520, 5442–5446 (2012)

    Article  ADS  Google Scholar 

  31. B. Guha, J. Cardenas, M. Lipson, Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21, 26557–26563 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Moo Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, JM. (2016). Athermal Silicon Photonics. In: Pavesi, L., Lockwood, D. (eds) Silicon Photonics III. Topics in Applied Physics, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10503-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10503-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10502-9

  • Online ISBN: 978-3-642-10503-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics