Skip to main content

Is Silicon Photonics a Competitive Technology to Enable Better and Highly Performing Networks?

  • Chapter
  • First Online:
Silicon Photonics III

Part of the book series: Topics in Applied Physics ((TAP,volume 122))

Abstract

This chapter focuses on the fundamental and high-speed characteristics of small-footprint integrated optical modulators designed and fabricated on the basis of the silicon-photonic platform to assess their key performance factors in applications related to high-capacity energy-efficient optical networks transmitting data in various modulation formats. The design and characteristics of high-speed silicon rib-waveguide phase shifters, which are most essential in the high-speed optical modulators, are described. A low-loss quasi-single-mode silicon rib-waveguide phase shifter with reduced RC delay is highlighted along with its design features and fundamental performances in terms of optical loss and on/off dynamic response. Free-carrier plasma dispersion is reviewed as a physical process for performing optical modulation, which allows a reduction in thermal drift and frequency chirping. The plasma dispersion has a unique property in that signal distortion due to residual intensity modulation cancels with the nonlinear voltage dependence of the optical phase, thereby being useful for zero-chirp optical modulators to eliminate transmission impairments. The on-off keying performance of a silicon optical modulator using a single Mach–Zehnder interferometer waveguide is described in the first example of optical network applications with emphasis on a 10-Gb/s dispersion tolerance comparable to that of a commercial lithium niobate modulator. The advantage of silicon-photonic integration is remarkable, in particular, for the ultrasmall-footprint silicon optical modulator consisting of a pair of IQ nested Mach–Zehnder interferometers for two orthogonal polarization components and a polarization multiplexer monolithically integrated on a silicon chip. Such a chip is presented with respect to applications in digital coherent communication in optical-fiber links up to 1000 km long at a bit rate as high as 128 Gb/s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Kawano, High-speed Ti:LiNbO3 and semiconductor optical modulators. IEICE Trans. Electron. E76-C, 183–190 (1993)

    Google Scholar 

  2. E.L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, D.E. Bossi, A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000)

    Article  Google Scholar 

  3. L. Thylén, U. Westergren, P. Holmstörm, R. Schatz, P. Jänes, Recent developments in high-speed optical modulators, in Optical fiber telecommunications V A components and subsystems (Academic, San Diego, 2008) (Chap. 7)

    Google Scholar 

  4. A.H. Gnauck, P.J. Winzer, Optical phase-shift-keyed transmission. J. Lightwave Technol. 23, 115–130 (2005)

    Article  ADS  Google Scholar 

  5. K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer, New York, 2005)

    Google Scholar 

  6. W.S.C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge, New York, 2002)

    Google Scholar 

  7. I.A. Young, E. Mohammed, J.T.S. Liao, A.M. Kern, S. Palermo, B.A. Block, M.R. Reshotko, P.L. Chang, Optical I/O technology for tera-scale computing. IEEE Com. Mag. 48(10), 184–191 (2010)

    Article  Google Scholar 

  8. Y.A. Vlasov, Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G. IEEE Com. Mag. 50(2), S67–S72 (2012)

    Article  Google Scholar 

  9. Y. Arakawa, T. Nakamura, Silicon photonics for next generation system integration platform. IEEE Com. Mag. 51(3), 72–77 (2013)

    Article  Google Scholar 

  10. T. Baehr-Jones, T. Pinguet, P. Lo G.-Q., S. Danziger, D. Prather, M. Hochberg, Myths and rumours of silicon photonics. Nat. Photon. 6, 206–208 (2012)

    Google Scholar 

  11. Workshop: Silicon photonics: Is it still in hype or on its way to the field?, Symposium: Beyond the gold box: the future of integrated optics I-III, in Optical Fiber Communication Conference and Exposition (OFC), (OSA, Washington, DC, 2015) S1A, W1H-W3H

    Google Scholar 

  12. K. Goi, A. Oka, H. Kusaka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong, Low-loss high-speed silicon IQ modulator for QPSK/DQPSK in C and L bands. Opt. Express 22, 10703–10709 (2014)

    Article  ADS  Google Scholar 

  13. F. Koyama, K. Iga, Frequency chirping in external modulators. J. Lightwave Technol. 6, 87–93 (1988)

    Article  ADS  Google Scholar 

  14. K. Goi, K. Oda, H. Kusaka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong, 11-Gb/s 80-km transmission performance of zero-chirp silicon Mach-Zehnder modulator. Opt. Express 20, B350–B356 (2012)

    Article  Google Scholar 

  15. K. Ogawa, K. Goi, Y.T. Tan, T.-Y. Liow, X. Tu, Q. Fang, G.-Q. Lo, D.-L. Kwong, Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0–12.5 Gbps. Opt. Express 19, B26–B31 (2011)

    Article  Google Scholar 

  16. R.A. Soref, B. A. Bennett, Electrooptical effects in silicon. IEEE J. Quantum Electron. QE-23, 123–129 (1987)

    Google Scholar 

  17. D.A.B. Miller, J.S. Weiner, D.S. Chemla, Electric-field dependence of linear optical properties in semiconductor quantum well structures: waveguide elecroabsorption and sum rules. IEEE J. Quantum Electron. QE-22, 1816–1830 (1986)

    Google Scholar 

  18. P.J. Winzer, R.-J. Essiambre, Advanced optical modulation formats. Proc. IEEE 94, 952–985 (2006)

    Article  Google Scholar 

  19. K. Kikuchi, Coherent transmission systems, in 34th European Conference and Exhibition on Optical Communication (ECOC2008, 21–25 September 2008, Brussels, Belgium) Th.2.A.1

    Google Scholar 

  20. K. Kikuchi, Coherent optical communication systems, in Optical Fiber Telecommunications V B Systems and Networks (Academic, San Diego, 2008) (Chap. 3)

    Google Scholar 

  21. G.P. Agrawal, Fiber-optic Communication Systems, 4th edn. (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  22. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, Guo-Qiang Lo, D.-L. Kwong, Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization. IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010)

    Google Scholar 

  23. F.Y. Gardes, G.T. Reed, N.G. Emerson, C.E. Png, A sub-micron depletion-type photonicmodulator in silicon on insulator. Opt. Express 13, 8845–8854 (2005)

    Article  ADS  Google Scholar 

  24. B. Analui, D. Guckenberger, D. Kucharski, A. Narasimha, A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology. IEEE J. Solid-State Circ. 41, 2945–2955 (2006)

    Article  Google Scholar 

  25. K. Ogawa, H. Ishihara, K. Goi, Y. Mashiko, S.T. Lim, M.J. Sun, S. Seah, C.E. Png, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong, Fundamental characteristics and high-speed applications of carrier-depletion silicon Mach-Zehnder modulators. IEICE Electron. Express 11, 20142010 (2014)

    Article  Google Scholar 

  26. H. Kusaka, A. Oka, K. Goi, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong, Monolithic photonic integrated circuit for optical performance monitoring of silicon Mach-Zehnder modulator in C and L bands, in 18th OptoElectronics and Communications Conference (OECC) (30 June–4 July 2013, Kyoto) MM1-4

    Google Scholar 

  27. K. Ogawa, K. Goi, H. Kusaka, Y. Terada, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong, V. Dixit, S. T. Lim, C. E. Png, Low-loss high-speed silicon Mach-Zehnder modulator for optical-fiber telecommunications. Proc. SPIE 8629, 86290U-1-86290U-8 (2013)

    Google Scholar 

  28. Fimmwave, http://www.photond.com/products/fimmwave.htm

  29. C.E. Png, V. Dixit, S.T. Lim, E.-P. Li, Accurate high-speed eye diagram simulation of silicon-based modulators. Proc. SPIE 8629, 86290S-1 (2013)

    Google Scholar 

  30. C.E. Png, S.P. Chan, S.T. Lim, G.T. Reed, Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI). J. Lightwave Technol. 22, 1573–1581 (2004)

    Article  ADS  Google Scholar 

  31. X. Tu, T.-Y. Liow, J. Song, M.B. Yu, G.-Q. Lo, Fabrication of low loss and high speed silicon optical modulator using doping compensation method. Opt. Express 19, 18029–18035 (2011)

    Article  ADS  Google Scholar 

  32. W.L. Bond, B.G. Cohen, R.C.C. Leite, A. Yariv, Observation of the dielectric-waveguide mode of light propagation in p-n junctions. Appl. Phys. Lett. 2, 57–59 (1963)

    Article  ADS  Google Scholar 

  33. A.K. Jonscher, M.H. Boyle, The flow of carriers and its effect on the spatial distribution of radiation from injection lasers. Proc. Symp. GaAs 12A (1966)

    Google Scholar 

  34. G.H.B. Thompson, A theory for filamentation in semiconductor lasers including the dependence of dielectric constant on injected carrier density. Opt. Quantum Electron. 4, 257–310 (1972)

    Google Scholar 

  35. O. Mikami, H. Nakagome, Waveguide optical switch in InGaAs/InP using free-carrier plasma dispersion. Electron. Lett. 20, 228–229 (1984)

    Article  ADS  Google Scholar 

  36. M. Asada, Theoretical linewidth enhancement factor α of GaInAs/InP lasers. IEICE Trans. E68, 518–520 (1985)

    Google Scholar 

  37. R.A. Soref, J.P. Lorenzo, All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 μm. IEEE J. Quantum Electron. 22, 873–879 (1986)

    Article  ADS  Google Scholar 

  38. R.A. Soref, J.P. Lorenzo, Silicon guided-wave optics. Solid State Technol. 31(11), 95–98 (1988)

    Google Scholar 

  39. B.R. Bennett, R.A. Soref, J.A. Del Alamo, Carrier-induced change in refractive index of InP, GaAs, and InGaAsP. IEEE J. Quantum Electron. 26, 113–122 (1990)

    Article  ADS  Google Scholar 

  40. M. Becker, H.Y. Fan, Optical properties of semiconductors. II. Infra-red transmission of germanium. Phys. Rev. 76, 1530–1531 (1949)

    Article  ADS  Google Scholar 

  41. M. Becker, H.Y. Fan, Optical properties of semiconductors. III. Infra-red transmission of silicon. Phys. Rev. 76, 1531–1532 (1949)

    Article  ADS  Google Scholar 

  42. H.B. Briggs, Infra-red absorption in silicon. Phys. Rev. 77, 727–722 (1950)

    Google Scholar 

  43. H.B. Briggs, R.C. Flecher, Absorption of infrared light by free carriers in germanium. Phys. Rev. 91, 1342–1346 (1953)

    Article  ADS  Google Scholar 

  44. H.Y. Fan, W. Spitzer, J.R. Collins, Infrared absorption.in n-type germanium. Phys. Rev. 101, 566–572 (1956)

    Article  ADS  Google Scholar 

  45. W. Spitzer, H.Y. Fan, Infrared absorption in n-type silicon. Phys. Rev. 108, 268–271 (1957)

    Article  ADS  Google Scholar 

  46. R. Rosenberg, M. Lax, Free-carrier absorption in n-type Ge. Phys. Rev. 112, 843–852 (1958)

    Article  ADS  Google Scholar 

  47. W.G. Spitzer, J.M. Whelan, Infrared absorption and electron effective mass in n-type ga1lium arsenide. Phys. Rev. 114, 59–63 (1959)

    Article  ADS  Google Scholar 

  48. H.R. Riedl, Free-carrier absorption in PbTe. Phys. Rev. 127, 162–166 (1962)

    Article  ADS  Google Scholar 

  49. R.M. Culpepper, J.R. Dixon, Free-carrier absorption in n-type indium arsenide. J. Opt. Soc. Am. 58, 96–102 (1968)

    Article  ADS  Google Scholar 

  50. J.D. Wiley, M. Didomenico, Free-carrier absorption in n-type GaP. Phys. Rev. B 1, 1655–1659 (1970)

    Article  ADS  Google Scholar 

  51. A.H. Kahn, Theory of the infrared absorption of carriers in germanium and silicon. Phys. Rev. 97, 1647–1652 (1955)

    Article  ADS  Google Scholar 

  52. W.P. Dumke, Quantum theory of free carrier absorption. Phys. Rev. 124, 1813–1817 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  53. P. Drude, Zur elektronentheorie der metalle. Ann. der Physik 306, 566–613 (1900)

    Article  ADS  Google Scholar 

  54. M. Takenaka, S. Takagi, Strain engineering of plasma dispersion effect for SiGe optical modulators. IEEE J. Quantum Electron. 48, 8–16 (2012)

    Article  ADS  Google Scholar 

  55. R.W. Boyd, Nonlinear Optics, 3rd ed. (Academic, San Diego, 2008) (Chap. 13)

    Google Scholar 

  56. X.B. Mei, K.K. Loi, H.H. Wieder, W.S.C. Chang, C.W. Tu, Strain-compensated InAsP/GaInP multiple quantum wells for l.3 μm waveguide modulators. Appl. Phys. Lett. 68, 90–92 (1996)

    Article  ADS  Google Scholar 

  57. K. Ogawa, Y. Matsui, Time-frequency spectroscopy of an InGaAs/InP quantum-well exciton Bragg reflector. Appl. Phys. Lett. 74, 2569–2571 (1999)

    Article  ADS  Google Scholar 

  58. H.Y. Fan, Temperature dependence of the energy gap in semiconductors. Phys. Rev. 82, 900–905 (1951)

    Article  MATH  ADS  Google Scholar 

  59. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, 40 Gbit/s silicon optical modulator for high-speed applications. Electron. Lett. 43, 1196–1197 (2007)

    Article  Google Scholar 

  60. D.J. Thomson, F.Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G.T. Reed, High contrast 40Gbit/s optical modulation in silicon. Opt. Express 19, 11507–11516 (2011)

    Article  ADS  Google Scholar 

  61. P. Dong, L. Chen, Y.-K. Chen, High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt. Express 20, 6163–6169 (2012)

    Article  ADS  Google Scholar 

  62. D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, D.V. Plant, Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express 23, 14263–14287 (2015)

    Article  ADS  Google Scholar 

  63. T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, K. Kasahara, A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise. J. Lightwave Technol. 21, 1933–1943 (2003)

    Article  ADS  Google Scholar 

  64. Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, G.-Q. Lo, High-efficiency Si optical modulator using Cu travelling-wave electrode. Opt. Express. 22, 29978 (2014)

    Google Scholar 

  65. Y. Miyata, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission, in Optical Fiber Communication Conference and Exposition (Optical Society of America, San Diego, 2010) OThL3

    Google Scholar 

  66. C.E. Png, M.J. Sun, S.T. Lim, K. Ogawa, Accurate modelling and simulation of silicon optical modulators in QPSK. Proc. SPIE 9367, 93670F (2015)

    Article  ADS  Google Scholar 

  67. K. Goi, H. Kusaka, A. Oka, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong, OFC digest W1I, 2 (2014)

    Google Scholar 

  68. K. Goi, A. Oka, H. Kusaka, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong, Low-loss partial rib polarization rotator consisting only of silicon core and silica cladding. Opt. Lett. 40, 1410–1413 (2015)

    Article  ADS  Google Scholar 

  69. K. Goi, K. Oda, H. Ishihara, R. Matsumoto, Y. Mashiko, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong, 128 Gb/s DP-QPSK silicon modulator module integrated with driver amplifiers, ECOC digest (2014) P.2.20

    Google Scholar 

  70. Q. Fang, T.-Y. Liow, J.F. Song, C.W. Tan, M.B. Yu, G.Q. Lo, D.-L. Kwong, Opt. Exp. 18, 7763 (2010)

    Article  ADS  Google Scholar 

  71. P. Dong, C. Xie, L. Chen, L.L. Buhl, Y.-K. Chen, 112-Gb/s monolithic PDM-QPSK modulator in silicon. Opt. Express 20, B624–B629 (2012)

    Article  Google Scholar 

  72. C. Doerr et al., Single-Chip Silicon Photonics 100-Gb/s Coherent Transceiver, Proceedings of OFC, Th5C.1, San Francisco (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Ogawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ogawa, K., Nishide, K. (2016). Is Silicon Photonics a Competitive Technology to Enable Better and Highly Performing Networks?. In: Pavesi, L., Lockwood, D. (eds) Silicon Photonics III. Topics in Applied Physics, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10503-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10503-6_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10502-9

  • Online ISBN: 978-3-642-10503-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics