Skip to main content

Merits and Potential Impact of Silicon Photonics

  • Chapter
  • First Online:
Silicon Photonics III

Part of the book series: Topics in Applied Physics ((TAP,volume 122))

Abstract

In this chapter, we review the technical merits of silicon photonic devices and integrated circuits, which have benefited from high-index-contrast silicon waveguides, a high integration level of various optical functions on the same chip, and mature complementary metal-oxide semiconductor (CMOS) fabrication techniques. These technical merits assure silicon photonics as a disruptive optical technology that will achieve low-cost and compact optical modules for data communications, with applications such as chip-scale optical interconnects, short-reach communications in datacenters and supercomputers, and metro/long-haul optical transmissions. We discuss various applications in these fields, which may benefit from implementation in silicon photonics. In particular, we review silicon photonic circuits for wavelength-division multiplexing (WDM) transmitters, WDM receivers, coherent optical transmitters and coherent receivers, which all require photonic integration to reduce the cost and module size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Dong, Y.-K. Chen, G.-H. Duan, D.T. Neilson, Silicon photonic devices and integrated circuits. Nanophotonics 3, 215–228 (2014)

    Article  Google Scholar 

  2. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, Silicon photonic circuit with polarization diversity. Opt. Express 16, 4872–4880 (2008)

    Article  ADS  Google Scholar 

  3. J. Zhang, M. Yu, G. Lo, D. Kwong, Silicon-waveguide-based mode evolution polarization rotator. IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010)

    Article  MATH  Google Scholar 

  4. L. Chen, C.R. Doerr, Y.-K. Chen, Compact polarization rotator on silicon for polarization-diversified circuits. Opt. Lett. 36, 469–471 (2011)

    Article  ADS  Google Scholar 

  5. D. Dai, J.E. Bowers, Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Opt. Express 19, 10940–10949 (2011)

    Article  ADS  Google Scholar 

  6. A.W. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M.N. Sysak, M.J. Paniccia, J.E. Bowers, Hybrid silicon evanescent devices. Mater. Today 10, 28–35 (2007)

    Article  Google Scholar 

  7. A. Le Liepvre, C. Jany, A. Accard, M. Lamponi, F. Poingt, D. Make, F. Lelarge, J.-M. Fedeli, S. Messaoudene, D. Bordel, G.-H. Duan, Widely wavelength tunable hybrid III–V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique, in IEEE 9th International Conference on Group IV Photonics (2012), pp. 54–56

    Google Scholar 

  8. ePIXfab, the silicon photonics platform, http://www.epixfab.eu

  9. Optoelectronic system integration in silicon, http://opsisfoundry.org/

  10. G. Duan, J. Fedeli, S. Keyvaninia, D. Thomson, 10 Gb/s integrated tunable hybrid III-V/Si laser and silicon Mach-Zehnder modulator. ECOC2012, Tu.4.E.2

    Google Scholar 

  11. F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, C. Joyner, From visible light-emitting diodes to large-scale III–V photonic integrated circuits. Proc. IEEE 101(10), 2255–2270 (2013)

    Article  Google Scholar 

  12. A. Chralyvy, The coming capacity crunch. ECOC2009, plenary paper

    Google Scholar 

  13. P. Winzer, Beyond 100G Ethernet. IEEE Commun. Mag. 48, 26–30 (2010)

    Article  Google Scholar 

  14. J. Kahn, K.-P. Ho, Spectral efficiency limits and modulation/detection techniques for DWDM systems. IEEE J. Select. Top. Quantum Electron. 10, 259–272 (2004)

    Google Scholar 

  15. W. Shieh, C. Athaudage, Coherent optical orthogonal frequency division multiplexing. Electron. Lett. 42, 587–589 (2006)

    Article  Google Scholar 

  16. P. Dong, C. Xie, L. Chen, L.L. Buhl, Y.-K. Chen, 112-Gb/s monolithic PDM-QPSK modulator in silicon. Opt. Express 20, B624–B629 (2012)

    Article  Google Scholar 

  17. C.R. Doerr, P.J. Winzer, Y.-K. Chen, S. Chandrasekhar, M.S. Rasras, L. Chen, T.-Y. Liow, K.-W. Ang, G.-Q. Lo, Monolithic polarization and phase diversity coherent receiver in silicon. J. Lightwave Technol. 28, 520–525 (2010)

    Article  ADS  Google Scholar 

  18. P. Dong, X. Liu, C. Sethumadhavan, L.L. Buhl, R. Aroca, Y. Baeyens, Y. Chen, 224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits. OFC2013, PDP5C.6

    Google Scholar 

  19. L. Chen, C.R. Doerr, L. Buhl, Y. Baeyens, R.A. Aroca, Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon. IEEE Photon. Technol. Lett. 23, 869–871 (2011)

    Article  ADS  Google Scholar 

  20. L. Chen, C.R. Doerr, P. Dong, Y. Chen, Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing. ECOC 2011, Th.13.A.1

    Google Scholar 

  21. S. Assefa, W.M.J. Green, A. Rylyakov, C. Schow, F. Horst, Y.A. Vlasov, Monolithic integration of silicon nanophotonics with CMOS, in IEEE Photonics Conference (2012), pp. 626–627

    Google Scholar 

  22. J.E. Cunningham, I. Shubin, H.D. Thacker, J.-H. Lee, G. Li, X. Zheng, J. Lexau, R. Ho, J.G. Mitchell, L. Ying, J. Yao, K. Raj, A.V. Krishnamoorthy, Scaling hybrid-integration of silicon photonics in Freescale 130 nm to TSMC 40 nm-CMOS VLSI drivers for low power communications, in IEEE 62nd Electronic Components and Technology Conference (ECTC) (2012), 1518–1525

    Google Scholar 

  23. D.T. Neilson, Photonics for switching and routing. IEEE J. Sel. Top. Quantum Electron. 12, 669–678 (2006)

    Article  Google Scholar 

  24. M.-J.E. Lee, W.J. Dally, R. Farjad-Rad, H-T. Ng, R. Senthinathan, J. Edmondson, J. Poulton, CMOS high-speed I/Os—present and future, in 21st International Conference on Computer Design (2003), pp. 454–461

    Google Scholar 

  25. Alcatel-Lucent 7950 extensible routing system core router family, (http://www.alcatel-lucent.com/products/7950-extensible-routing-system-0)

  26. Supercomputer Top 500 List, http://s.top500.org/static/lists/2012/11/TOP500_201211_Poster.pdf. Accessed Nov 2012

  27. G.E. Moore, Lithography and the future of Moore’s law, in SPIE’s 1995 Symposium on Microlithography (1995)

    Google Scholar 

  28. B. Sheu, K. Wilcox, A.M. Keshavarzi, D. Antoniadis, Moore’s law challenges below 10 nm: technology, design and economic implications, in IEEE Solid-State Circuits Conference (ISSCC), EP1 (2015)

    Google Scholar 

  29. H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, D. Burger, Dark silicon and the end of multicore scaling, in IEEE 38th Annual International Symposium on Computer Architecture (ISCA) (2011), pp. 365–376

    Google Scholar 

  30. A. Karim, K. Samadi, Y. Du, 3D VLSI: a scalable integration beyond 2D, in Proceedings of the Symposium on International Symposium on Physical Design (ACM, 2015)

    Google Scholar 

  31. E. Socher, M. Chang, Can RF help CMOS processors? IEEE Commun. Mag. 45(8), 104–111 (2007)

    Article  Google Scholar 

  32. M. Haurylau, G. Chen, H. Chen, J. Zhang, N.A. Nelson, D.H. Albonesi, P.M. Fauchet, On-chip optical interconnect roadmap: challenges and critical directions. IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006)

    Article  Google Scholar 

  33. A. Shacham, K. Bergman, L.P. Carloni, Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. 57, 1246–1260 (2008)

    Article  MathSciNet  Google Scholar 

  34. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A.V. Krishnamoorthy, M. Asghari, Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express 17, 22484–22490 (2009)

    Article  ADS  Google Scholar 

  35. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J.E. Cunningham, A.V. Krishnamoorthy, M. Asghari, Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt. Express 18, 20298–20304 (2010)

    Article  ADS  Google Scholar 

  36. M. Poulin, C. Latrasse, J.F. Gagné, Y. Painchaud, M. Cyr, C. Paquet, D.V. Plant, 107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm. ECOC 2014, Mo.4.5.3

    Google Scholar 

  37. Y. Kai, M. Nishihara, T. Tanaka, R. Okabe, T. Takahara, J. C. Rasmussen, K. Ogawa, 130-Gbps DMT transmission using silicon Mach-Zehnder modulator with chirp control at 1.55-μm. OFC2015, Th4A-1

    Google Scholar 

  38. V. Vujicic, C. Calò, R. Watts, F. Lelarge, C. Browning, K. Merghem, L.P. Barry, Quantum dash passively mode-locked lasers for Tbit/s data interconnects. OFC2015, Tu3I-4

    Google Scholar 

  39. P. Dong, Y.-K. Chen, T. Gu, L.L. Buhl, D.T. Neilson, J.H. Sinsky, Reconfigurable 100 Gb/s silicon photonic network-on-chip. J. Opt. Commun. Netw. 7(1), A37–A43 (2015)

    Article  Google Scholar 

  40. T. Pinguet, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T.J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, P. De Dobbelaere, G. Capellini, Monolithically integrated high-speed CMOS photonic transceivers, in Proceedings of the 5th IEEE International Conference Group IV Photonics (2008), pp. 362–364

    Google Scholar 

  41. P. De Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, A. Narasimha, D. Guckenberger, M. Harrison, Si photonics based high-speed optical transceivers. ECOC2012, We.1.E.5

    Google Scholar 

  42. A. Alduino, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, H. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I.-W. Hsieh, J. Heck, R. Beatty, H. Park, J. Boving- ton, S. Lee, H. Nguyen, H. Au, K. Nguyen, P. Merani, M. Hakami, M. Paniccia, Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers. Integrated Photonics Research, and Silicon Nanophotonics, PDIWI5 (2010)

    Google Scholar 

  43. www.cisco.com/go/100G

  44. X. Zheng, E. Chang, I. Shubin, G. Li, Y. Luo, J. Yao, H. Thacker, J.-H. Lee, J. Lexau1, F. Liu1, P. Amberg, K. Raj, R. Ho, J.E. Cunningham, A.V. Krishnamoorthy, A 33mW 100Gbps CMOS silicon photonic WDM transmitter using off-chip laser sources. OFC2013, PDP5C.9

    Google Scholar 

  45. A. Ramaswamy, J. Roth, E. Norberg, R.S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B.G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, C. Schow, A WDM 4 × 28 Gbps integrated silicon photonic transmitter driven by 32 nm CMOS driver ICs. OFC2015, Th5B.5

    Google Scholar 

  46. P. Dong, J. Lee, Y. Chen, L. L. Buhl, S. Chandrasekhar, J.H. Sinsky, K. Kim, Four-channel 100-Gb/s per channel discrete multi-tone modulation using silicon photonic integrated circuits. OFC2015, Th5B.4

    Google Scholar 

  47. Q. Fang, T.Y. Liow, J.F. Song, K.W. Ang, M.B. Yu, G.Q. Lo, D.L. Kwong, WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability. Opt. Express 18, 5106–5113 (2010)

    Article  ADS  Google Scholar 

  48. H. Nishi, T. Tsuchizawa, R. Kou, H. Shinojima, T. Yamada, H. Kimura, Y. Ishikawa, K. Wada, K. Yamada, Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver. Opt. Express 20, 9312–9321 (2012)

    Article  ADS  Google Scholar 

  49. D. Feng, W. Qian, H. Liang, N. Feng, S. Liao, C. Kung, J. Fong, Y. Liu, R. Shafiiha, D. Lee, B. Luff, M. Asghari, Terabit/s single chip WDM receiver on the SOI platform, in 8th IEEE International Conference on Group IV Photonics, FA2 (2012)

    Google Scholar 

  50. P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, Polarization-insensitive 5 × 20 Gb/s WDM Ge receiver using compact Si ring filters with collective thermal tuning. OFC2014, Th4C.5

    Google Scholar 

  51. L. Chen, C.R. Doerr, Y. Chen, Polarization-diversified DWDM receiver on silicon free of polarization-dependent wavelength shift. OFC2012, OW3G.7

    Google Scholar 

  52. P. Dong, Y. Chen, L.L. Buhl, Reconfigurable four-channel polarization diversity silicon photonic WDM receiver. OFC2015, W3A.2

    Google Scholar 

  53. P. Dong, L. Chen, C. Xie, L.L. Buhl, Y.-K. Chen, 50-Gb/s silicon quadrature phase-shift keying modulator. Opt. Express 20, 21181–21186 (2012)

    Article  ADS  Google Scholar 

  54. K. Goi, H. Kusaka, A. Oka, K. Ogawa, T. Liow, X. Tu, P.G. Lo, D.L. Kwong, 128-Gb/s DP-QPSK using low-loss monolithic silicon IQ modulator integrated with partial-rib polarization rotator. OFC2014, W1I.2

    Google Scholar 

  55. B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, K. Shastri, 112 Gb/s DP-QPSK transmission over 2427 km SSMF using small-size silicon photonic IQ modulator and low-power CMOS driver. OFC2013, OTh1D.1

    Google Scholar 

  56. D. Korn, R. Palmer, H. Yu, P.C. Schindler, L. Alloatti, M. Baier, R. Schmogrow, W. Bogaerts, S.K. Selvaraja, G. Lepage, M. Pantouvaki, J.M.D. Wouters, P. Verheyen, J. Van Campenhout, B. Chen, R. Baets, P. Absil, R. Dinu, C. Koos, W. Freude, J. Leuthold, Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s. Opt. Express 21, 13219–13227 (2013)

    Article  ADS  Google Scholar 

  57. M. Lauermann, P.C. Schindler, S. Wolf, R. Palmer, S. Koeber, D. Korn, L. Alloatti, T. Wahlbrink, J. Bolten, M. Waldow, M. Koenigsmann, M. Kohler, D. Malsam, D.L. Elder, P.V. Johnston, N. Phillips-Sylvain, P.A. Sullivan, L.R. Dalton, J. Leuthold, W. Freude, C. Koos, 40 GBd 16QAM modulation at 160 Gbit/s. ECOC2014, We.3.1.3

    Google Scholar 

  58. P. Dong, C. Xie, L.L. Buhl, Monolithic polarization diversity coherent receiver based on 120-degree optical hybrids on silicon. Opt. Express 22, 2119–2125 (2014)

    Article  ADS  Google Scholar 

  59. C.R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, S.Y. Park, Single-chip silicon photonics 100-Gb/s coherent transceiver. OFC2014, Th5C.1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dong, P., Duan, GH., Chen, YK., Neilson, D.T. (2016). Merits and Potential Impact of Silicon Photonics. In: Pavesi, L., Lockwood, D. (eds) Silicon Photonics III. Topics in Applied Physics, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10503-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10503-6_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10502-9

  • Online ISBN: 978-3-642-10503-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics