Skip to main content

Silicon Photonics Research and Manufacturing Using a 300-mm Wafer Platform

  • Chapter
  • First Online:
Silicon Photonics III

Part of the book series: Topics in Applied Physics ((TAP,volume 122))

Abstract

After 15 years of research, silicon photonics has now reached a sufficient level of maturity at the device level to be implemented into low-cost optical communication products. In this chapter we review the challenges of the industrialization of silicon photonics in 300 mm facilities, using mainstream CMOS methodologies. We first review the challenges of a sustainable electronic and photonic integration allowing the production of low-cost chips for the current 100G generation but also for the future 400G and beyond. Next, the industrial testing strategy and the design of test circuits allowing an efficient process monitoring are discussed. The industrial process integration scheme of optical components on 300 mm wafers is then described, followed by the device model strategy, which is a key element in order to make the link between the photonic design kit and the process. Finally, further R&D efforts in 300 mm allowing new functionality for the longer term Si photonics development are discussed. As examples, the integration of several Si etching levels, the demonstration of smart SOI substrates feasibility for improved coupling efficiency, and integration of ring modulator are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cisco, “Cisco Global Cloud Index: Forecast and Methodology, 2012–2017.” White Paper

    Google Scholar 

  2. “Google Datacenter.”

    Google Scholar 

  3. “The Facebook Datacenter FAQ.”

    Google Scholar 

  4. A.V. Krishnamoorthy, K.W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, J.E. Cunningham, Progress in low-power switched optical interconnects. IEEE J. Sel. Top. Quantum Electron. 17(2), 357–376 (2011)

    Article  Google Scholar 

  5. F. Boeuf, F. Arnaud, Défis et Méthodologie du Développement des technologies CMOS Avancées, in La Micro-Nanoélectronique : Enjeux et Mutations, CNRS Editions, pp. 45–64

    Google Scholar 

  6. L. Zimmermann, D. Knoll, M. Kroh, S. Lischke, D. Petousi, G. Winzer, Y. Yamamoto, “BiCMOS Silicon Photonics Platform,” presented at the OFC 2015, Los Angeles, p. Th4E.5

    Google Scholar 

  7. D.J. Shin, K.S. Cho, H. Ji, B.S. Lee, S.G. Kim, J.K. Bok, S.H. Choi, Y.H. Shin, J.H. Kim, S.Y. Lee, K.Y. Cho, B.J. Kuh, J.H. Shin, J.S. Lim, J.M. Kim, H.M. Choi, K.H. Ha, Y.D. Park, C.H. Chung, Integration of silicon photonics into DRAM process, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013, 2013, pp. 1–3

    Google Scholar 

  8. R. Meade, J.S. Orcutt, K. Mehta, O. Tehar-Zahav, D. Miller, M. Georgas, B. Moss, C. Sun, Y.-H. Chen, J. Shainline, M. Wade, R. Bafrali, Z. Sternberg, G. Machavariani, G. Sandhu, M. Popovic, R. Ram, V. Stojanovic, Integration of silicon photonics in bulk CMOS, in 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014, pp. 1–2

    Google Scholar 

  9. A. Huang, C. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, A 10 Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13/spl mu/m SOI CMOS, in Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International, 2006, pp. 922–929

    Google Scholar 

  10. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D.M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, Y. Vlasov, A 90 nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications, in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 33.8.1–33.8.3

    Google Scholar 

  11. C. Kopp, S. Bernabé, B.B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, T. Tekin, Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging. IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011)

    Article  Google Scholar 

  12. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P. De Dobbelaere, A grating-coupler-enabled CMOS photonics platform. IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011)

    Article  Google Scholar 

  13. L. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, P. De Dobbelaere, Silicon photonics device libraries for high-speed transceivers, in Photonics Conference (IPC), 2014 IEEE, 2014, pp. 65–66

    Google Scholar 

  14. S. Joblot, A. Farcy, N. Hotellier, A. Jouve, F. de Crecy, A. Garnier, M. Argoud, C. Ferrandon, J.P. Colonna, R. Franiatte, C. Laviron, S. Cheramy, Wafer level encapsulated materials evaluation for chip on wafer (CoW) approach in 2.5D Si interposer integration, in 2013 IEEE International 3D Systems Integration Conference (3DIC), 2013, pp. 1–7

    Google Scholar 

  15. F. Boeuf, S. Cremer, N. Vulliet, T. Pinguet, A. Mekis, G. Masini, L. Verslegers, P. Sun, A. Ayazi, N.-K. Hon, S. Sahni, Y. Chi, B. Orlando, D. Ristoiu, A. Farcy, F. Leverd, L. Broussous, D. Pelissier-Tanon, C. Richard, L. Pinzelli, R. Beneyton, O. Gourhant, E. Gourvest, Y. Le-Friec, D. Monnier, P. Brun, M. Guillermet, D. Benoit, K. Haxaire, J.R. Manouvrier, S. Jan, H. Petiton, J.F. Carpentier, T. Quemerais, C. Durand, D. Gloria, M. Fourel, F. Battegay, Y. Sanchez, E. Batail, F. Baron, P. Delpech, L. Salager, P. De Dobbelaere, B. Sautreuil, A multi-wavelength 3D-compatible silicon photonics platform on 300 mm SOI wafers for 25 Gb/s applications, in Electron Devices Meeting (IEDM), 2013 IEEE International, 2013, pp. 13.3.1–13.3.4

    Google Scholar 

  16. S.K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, P. Absil, SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device, in 8th IEEE International Conference on Group IV Photonics (GFP), 2011, 2011, pp. 71–73

    Google Scholar 

  17. M.T. Currie, S.B. Savamedam, T.A Langdo, C.W. Leitz, E.A. Fitzgerald, Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 1718–1720 (1998)

    Google Scholar 

  18. OZOPTICS

    Google Scholar 

  19. Y. Yang, M. Yu, S. Member, Q. Fang, J. Song, L. Ding, G. Lo, Through-Si-via (TSV) Keep-Out-Zone (KOZ) in SOI photonics interposer : a study of the impact of TSV-induced stress on si ring resonators in SOI photonics interposer : a study of the impact of TSV-induced stress on si ring resonators. IEEE Photonics J. 5(6) (2013)

    Google Scholar 

  20. G.T. Reed, G.Z. Mashanovich, F.Y. Gardes, M. Nedeljkovic, Y. Hu, D.J. Thomson, K. Li, P.R. Wilson, S. Chen, S.S. Hsu, Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics 3(4), 229–245 (2013)

    Google Scholar 

  21. G. Li, T.G. Masson, P.K. Yu, Analysis of segmented traveling-wave optical modulators. J. Light. Technol. 22(7), 1789–1796 (2004)

    Article  ADS  Google Scholar 

  22. M. Cignoli, G. Minoia, M. Repossi, D. Baldi, A. Ghilioni, E. Temporiti, F. Svelto, A 1310 nm 3D-Integrated Silicon Photonics Mach-Zehnder-Based Transmitter with 275mW Multistage CMOS Driver Achieving 6 dB Extinction Ratio at 25 Gb/s, in IEEE International Solid-State Circuits Conference, 2015, pp. 416–418

    Google Scholar 

  23. Datasheet SHF 806E, 2015

    Google Scholar 

  24. T. Baehr-jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, C. Nicholas, M. Streshinsky, P. Lee, Y. Zhang, A.E. Lim, S.H. Teo, G. Lo, M. Hochberg, Ultralow drive voltage silicon traveling-wave modulator. Opt. Exp. 20(11), 12014–12020 (2012)

    Article  ADS  Google Scholar 

  25. M. Streshinsky, R. Ding, A. Novack, Y. Liu, X. Tu, A.E. Lim, E. Koh Sing Chen, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, 50 Gb/s Silicon Traveling Wave Mach-Zehnder Modulator near 1300 nm, in Optical Fiber Communication Conference, 2014

    Google Scholar 

  26. E. Temporiti, G. Minoia, M. Repossi, D. Baldi, A. Ghilioni, F. Svelto, A 3D-integrated 25Gbps silicon photonics receiver in PIC25G and 65 nm CMOS technologies, in European Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014–40th, 2014, pp. 131–134

    Google Scholar 

  27. InfinityQuadeTM Multi-contact probe

    Google Scholar 

  28. P. De Dobbelaere, Silicon Photonics Technology Platform for High Speed Interconnect, in Semicon West, 2013

    Google Scholar 

  29. G. Denoyer, C. Cole, A. Santipo, R. Russo, C. Robinson, L. Li, Y. Zhou, J.A. Chen, B. Park, F. Boeuf, S. Cremer, N. Vulliet, Hybrid silicon photonic circuits and transceiver for 50 Gb/s NRZ transmission over single-mode fiber. Light. Technol. J. 33(6), 1247–1254 (2015)

    Article  Google Scholar 

  30. W.S. Zaoui, A. Kunze, W. Vogel, M. Berroth, CMOS-compatible polarization splitting grating couplers with a backside metal mirror. IEEE Photonics Technol. Lett. 25(14), 1395–1397 (2013)

    Article  ADS  Google Scholar 

  31. P. De Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, A. Narasimha, Si photonics based high-speed optical transceivers, in 2012 38th European Conference and Exhibition on Optical Communications (ECOC), 16–20 Sept. 2012, 2012, p. 3

    Google Scholar 

  32. C. Zhang, J.-H. Sun, X. Xiao, W.-M. Sun, X.-J. Zhang, T. Chu, J.-Z. Yu, Y.-D. Yu, High efficiency grating coupler for coupling between single-mode fiber and SOI waveguides. Chin. Phys. Lett. 30(1), 014207 (2013)

    Article  ADS  Google Scholar 

  33. X. Chen, C. Li, C.K.Y. Fung, S.M.G. Lo, H.K. Tsang, apodized waveguide grating couplers for efficient coupling to optical fibers. IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010)

    Article  ADS  Google Scholar 

  34. X. Chen, H.K. Tsang, Engineering of silicon-on-insulator waveguide gratings for coupling to optical fibers, in Opto-Electronics and Communications Conference (OECC), 2011 16th, 2011, pp. 845–846

    Google Scholar 

  35. C. Li, H. Zhang, M. Yu, G.Q. Lo, CMOS-compatible high efficiency double-etched apodized waveguide grating coupler. Opt. Exp. 21(7), 7868 (2013)

    Article  ADS  Google Scholar 

  36. Z. Wang, Y. Tang, L. Wosinski, High efficiency grating couplers for silicon-on-insulator photonic circuits, in 2010 36th European Conference and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3

    Google Scholar 

  37. W.S. Zaoui, M.F. Rosa, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69 % coupling efficiency. Opt. Exp. 20(26), B238 (2012)

    Article  Google Scholar 

  38. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, G. Roelkens, High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. Opt. Exp. 18(17), 18278 (2010)

    Article  ADS  Google Scholar 

  39. F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, R. Baets, Focusing polarization diversity grating couplers in silicon-on-insulator. J. Light. Technol. 27(5), 612–618 (2009)

    Article  Google Scholar 

  40. S.K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, R. Baets, Highly efficient grating coupler between optical fiber and silicon photonic circuit, in Conference on Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009, 2009, pp. 1–2

    Google Scholar 

  41. C. Kopp, E. Augendre, R. Orobtchouk, O. Lemonnier, J.-M. Fedeli, Enhanced fiber grating coupler integrated by wafer-to-wafer bonding. J. Light. Technol. 29(12), 1847–1851 (2011)

    Article  ADS  Google Scholar 

  42. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T.F. Krauss, R. Baets, Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides. J. Light. Technol. 25(1), 151–156 (2007)

    Article  Google Scholar 

  43. G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, E. John, A.V. Krishnamoorthy, 40 Gb / s thermally tunable CMOS ring modulator, in Conference on Group IV Photonics, 2012, pp. 12–14

    Google Scholar 

  44. O. Dubray, S. Menezo, B. Blampey, P. Le Maitre, J.F. Carpentier, B. Ben Bakir, 20 Gb / s PAM-4 Transmission from 35 to 90 °C by modulating a Silicon Ring Resonator Modulator with 2Vpp, in Optical Fiber Communication Conference, 2015, pp. 4–6

    Google Scholar 

  45. C. Li, R. Bai, A. Shafik, E.Z. Tabasy, G. Tang, C. Ma, C.H. Chen, Z. Peng, M. Fiorentino, P. Chiang, S. Palermo, A ring-resonator-based silicon photonics transceiver with bias-based wavelength stabilization and adaptive-power-sensitivity receiver. IEEE Int. Solid-State Circuits Conf. 56, 124–125 (2013)

    Google Scholar 

  46. M. Rakowski, M. Pantouvaki, P. De Heyn, P. Verheyen, M. Ingels, H. Chen, J. De Coster, G. Lepage, B. Snyder, K. De Meyer, M. Steyaert, N. Pavarelli, J.S. Lee, P. O’Brien, P. Absil, J. Van Campenhout, A 4 × 20 Gb/s WDM Ring-Based Hybrid CMOS Silicon Photonics Transceiver, in IEEE International Solid-State Circuits Conference, 2015

    Google Scholar 

  47. J. Müller, F. Merget, S.S. Azadeh, J. Hauck, S.R. García, B. Shen, J. Witzens, Optical peaking enhancement in high-speed ring modulators. Sci. Rep. 4(6310) (2014)

    Google Scholar 

  48. D.G. Rabus, Integrated Ring Resonator, The Compendium (2007)

    Google Scholar 

  49. Y. Ma, Z. Xuan, Y. Liu, R. Ding, Y. Li, A.E. Lim, G. Lo, T. Baehr-jones, M. Hochberg, Silicon Microring Based Modulator and Filter for High Speed Transmitters at 1310 nm, in IEEE Optical Interconnect Conference, 2014, vol. MC6, pp. 23–24

    Google Scholar 

  50. J.K. Poon, W.D. Sacher, J.C. Mikkelsen, S. Assefa, D.M. Gill, T. Barwicz, H. Pan, S.M. Shank, Y. Vlasov, W.M. Green, Breaking the Conventional Limitations of Microrings, in CLEO: 2014, 2014, p. SM3G.1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Bœuf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bœuf, F., Carpentier, J.F., Baudot, C., Le Maitre, P., Manouvrier, JR. (2016). Silicon Photonics Research and Manufacturing Using a 300-mm Wafer Platform. In: Pavesi, L., Lockwood, D. (eds) Silicon Photonics III. Topics in Applied Physics, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10503-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10503-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10502-9

  • Online ISBN: 978-3-642-10503-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics