Skip to main content

Micro and Nanodevices for Thermoelectric Converters

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology 2

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This focus of this chapter is the presentation of micro and nanodevices for thermoelectric converters. Examples of applications for these converters are (1) in the conversion of electrical energy from temperature gradients and (2) in cooling devices. These converters are of solid-state type and use pairs of thermoelectric p- and n-type materials, which were obtained by thin-films depositions. In this context, issues such the fabrication and characterization details of materials are discussed. The materials selected to serve as p- and n-type structures were the antimony telluride (Sb2Te3) and the bismuth telluride (Bi2Te3). The thin-films depositions of both Bi2Te3 and Sb2Te3 materials require a precise controlled process to achieve the highest possible thermoelectric figure-of-merit, ZT, and at the same time to achieve the desire composition. This goal is achieved with the co-evaporation of antimony (Sb)/bismuth(Bi) and telluride (Te) technique. It is also analyzed the influence of the parameters involved in the depositions (e.g., the temperature which the substrate is subjected, and the evaporation rates of Sb/Bi and Te), and their impacts in the final composition of Sb2Te3 and Bi2Te3 thin-films. Advanced issues and trends related to the fabrication of super-lattices for use in thermoelectric converters are also presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.I. Seebeck, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265–373 (1822)

    Google Scholar 

  2. J.C. Peltier, Annales de Chimie et the Physique, LVI 56, 371–386 (1834)

    Google Scholar 

  3. H. Böttner, J. Nurnus et al., J. Microelectromech. Syst. 13, 414–420 (2004)

    Article  Google Scholar 

  4. L.W. da Silva, M. Kaviany, J. Mem. Science 14, 1110 (2005)

    Google Scholar 

  5. G.J. Snyder et al., Nat. Mater. Lett. 2, 528–531 (2003)

    Article  CAS  Google Scholar 

  6. H. Böttner, in Proceedings of ICT’05, Clemson, SC, USA, 2005

    Google Scholar 

  7. Seiko electronics, http://www.sii.co.jp/info/eg/thermic_main.html

  8. Citizen electronics, http://www.citizen.co.jp/english/release/01//03basel/thermo.htm

  9. Micropelt, http://www.micropelt.com

  10. Nanocoolers, http://www.nanocoolers.com

  11. F. Völklein et al., in Proceedings of 18th International Conference on Thermoelectrics – ICT ’99, Baltimore, MD, USA, 1999, pp. 285–293

    Google Scholar 

  12. L.W. da Silva, M. Kaviany, J. Microelectromech. Syst. 14, 1110 (2005)

    Article  Google Scholar 

  13. C. Shafai, Natl. Libr. Canada 76 (1998)

    Google Scholar 

  14. D.D.L. Wijngaards et al., Sens Actuators A Phys Sens 85, 316–323 (2000)

    Article  Google Scholar 

  15. S. Schaevitz, A MEMS Thermoelectric Generator (Massachusetts Institute of Technology, Cambridge, MA, 2000)

    Google Scholar 

  16. G. Min, D.M. Rowe, Solid-State Electron. 43, 923–929 (1999)

    Article  CAS  Google Scholar 

  17. F. Volklein et al., Sens Actuators A Phys Sens 75, 95–101 (1999)

    Article  Google Scholar 

  18. A. Jacquot et al., Sens Actuators A Phys Sens 116, 501–508 (2004)

    Article  Google Scholar 

  19. I. Stark, M. Stordeur, in Proceedings of 18th International Conference on Thermoelectrics – ICT’99, Baltimore, MD, USA, 1999, pp. 465–472

    Google Scholar 

  20. M. Stordeur, I. Stark, in Proceedings of 16th International Conference on Thermoelectrics – ICT’97, 1997

    Google Scholar 

  21. W. Qu et al., J. Micromech. Microeng. 11, 146–152 (2001)

    Article  CAS  Google Scholar 

  22. U. Ghoshal, R. Schmidt, in Proceedings of IEEE International Solid-State Circuits Conference – ISSCC’00, San Francisco, CA, USA, 2000

    Google Scholar 

  23. R. Venkatasubramanian, Semiconduct. Semimet. 71, 175–201 (2001)

    CAS  Google Scholar 

  24. G. Chen et al., Int. Mater. Rev. 48 (2003)

    Article  Google Scholar 

  25. M.S. Dresselhaus, in Semiconductors and Semimetals:Recent Trends in Thermoelectric Materials Research III, vol. 71, ed. by T.M. Tritt (Academic, London, 2001), pp. 1–121

    Google Scholar 

  26. R. Venkatasubramanian et al., in Proceedings of 1st Natl Thermogenic Cooler Workshop, Center for Night Vision and Electro-Optics, Fort Belvoir, VA, 1992, pp. 196–231

    Google Scholar 

  27. R. Venkatasubramanian et al., Nature 413, 597 (2001)

    Article  CAS  Google Scholar 

  28. L.M. Gonçalves et al., J. Micromech. Microeng. S168–S173 (2007)

    Google Scholar 

  29. H. Zou et al., Thin Solid Films 408, 270–274 (2002)

    Article  CAS  Google Scholar 

  30. L. da Silva et al., J. Appl. Phys. 97, 114903 (2005)

    Article  Google Scholar 

  31. D. Kim et al., Thin Solid Films 510, 148–153 (2006)

    Article  CAS  Google Scholar 

  32. L. da Silva, M. Kaviany, in Proceedings of IMECE 2002–2002 ASME International Mechanical Engineering Congress & Exposition, New Orleans, LA, USA, 2002. Paper No. 2-8-1-6

    Google Scholar 

  33. D.M. Rowe (ed.), Handbook of Thermoelectric (CRC, Boca Raton, FL, 1987), pp. 211–237

    Google Scholar 

  34. L.M. Goncalves et al., Sens. Actuators A Phys. Sens. 145–146, 75–80 (2008)

    Article  Google Scholar 

  35. L. Bell, Science 321, 1457–1461 (2008)

    Article  CAS  Google Scholar 

  36. D.D.L. Wijngaards, Phd Thesis, Tu Delft, 2003

    Google Scholar 

  37. V. Fano, in CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (CRC, Boca Raton, FL, 1987), p. 261

    Google Scholar 

  38. C.B. Vining, in CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (CRC, London, 1987), p. 329

    Google Scholar 

  39. Z. Helin et al., Thin Solid Films 408, 270–274 (2002)

    Article  Google Scholar 

  40. J. Lim et al., in Proceedings of ICT2002, Long Beach, 2002, pp. 535–539

    Google Scholar 

  41. A. Foucaran, Mater. Sci. Eng. B 52, 154–161 (1998)

    Article  Google Scholar 

  42. A. Giani et al., Mater. Sci. Eng. B 64, 19–24 (1999)

    Article  Google Scholar 

  43. Z.M. Lia et al., J. Cryst. Growth 311, 4679–4684 (2009)

    Article  Google Scholar 

  44. D.D.L. Wijngaards, R.F. Wolffenbuttel, IEEE Trans. Electron. Devices 52 (2005)

    Google Scholar 

  45. Y.F. Chan et al., IEEE Trans. Ind. Electron. 54, 1898–1906 (2007)

    Article  Google Scholar 

  46. F. Völklein, in Proceedings of Symposium on Microtechnology in Metrology and Metrology in Microsystems, Delft, The Netherlands, 2000

    Google Scholar 

  47. B. Poudel et al., Science 320, 634–638 (2008)

    Article  CAS  Google Scholar 

  48. T.C. Harman et al., Science 297, 2229–2232 (2002)

    Article  CAS  Google Scholar 

  49. Y. Zhang et al., J. Microelectromech. Syst. 16, 1113–1119 (2007)

    Article  CAS  Google Scholar 

  50. L.M. Gonçalves et al., Thin Solid Films 518, 2816–2821 (2010)

    Article  Google Scholar 

  51. L.M. Gonçalves et al., Vaccum 82, 1499–1502 (2008)

    Article  Google Scholar 

  52. L.M. Gonçalves et al., Sens. Actuators A Phys. Sens. 130–131, 346–351 (2006)

    Article  Google Scholar 

  53. L.M. Gonçalves et al., in Proceedings of IECON 2009, Porto, Portugal, 2009, pp. 4076–4080

    Google Scholar 

  54. L.M. Gonçalves et al., in Proceedings of MME 2008, Aachen, Germany, 2008, pp. 49–52

    Google Scholar 

  55. L.M. Gonçalves et al., in Proceedings of Transducers 2005, Seoul, Korea, 2005, pp. 904–907

    Google Scholar 

  56. J.P. Carmo et al., Electron. Lett. 45, 803–805 (2009)

    Article  Google Scholar 

  57. H. Böttner et al., MRS Bull. 31, 211–217 (2006)

    Google Scholar 

  58. J.R. Heath, Nature 445, 492–493 (2007)

    Article  CAS  Google Scholar 

  59. J.P. Carmo et al., IEEE Trans. Ind. Electron. 57, 861–867 (2010)

    Article  Google Scholar 

  60. G. Min et al., IEEE Trans. Energy Convers. 32, 528–534 (2007)

    Article  Google Scholar 

  61. M. Miles, Science 277,1845–1847 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Carmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carmo, J.P., Gonçalves, L.M., Correia, J.H. (2011). Micro and Nanodevices for Thermoelectric Converters. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 2. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10497-8_25

Download citation

Publish with us

Policies and ethics