Skip to main content

Surface Growth Processes Induced by AFM Debris Production. A New Observable for Nanowear

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology 2

Part of the book series: NanoScience and Technology ((NANO))

  • 3026 Accesses

Abstract

Loss of material due to abrasion, adhesion, erosion or other types of wear mechanisms is a fundamental phenomenon occurring between two surfaces in relative motion on each other. Generally, in a wide range of length scales, from macroscale down to nanoscale, wear is quantified by measuring the volume loss after a wear test, and the quantification of the wear volume is the main observable to be measured in a wear test. In this chapter, we present some recent results showing that in precise experimental conditions, as ultrahigh vacuum (UHV) environments, surface growth processes induced by atomic force microscopy (AFM) tip sample abrasion can be estimated to have an accurate knowledge of atomic and molecular onset mechanisms involving the occurrence of wear mechanisms, mainly abrasion. In fact, recent UHV scratching AFM experiments made on ionic crystals showed the formation of small clusters, larger aggregates or regular patterns on the surface being scanned, and a theory capable of capturing the basic mechanisms producing the formation of such structures has been proposed. Such cluster structures, generally self-organised in regular structures, are mainly produced by the flux of adatoms generated by the AFM tip stripping off adatoms during the continuous passage of the probe tip on the surface being analysed. In UHV environments, surface diffusion is the dominant mass transport mechanism, and a non-equilibrium thermodynamic framework for the self-organised growth process has been developed demonstrating that the surface growth processes maintain a sort of coherence with respect to the flux rates of the adatomic debris induced by the AFM tip during the wear test making the wearing and the surface growth specular. As a consequence, the physical nature of the growth processes induced by AFM debris could represent a new observable to be measured for a new and accurate comprehension of wear mechanisms on nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ludema, Friction, Wear and Lubrication, a Textbook in Tribology (CRC Press, Boca Raton, 1996)

    Book  Google Scholar 

  2. K. Ludema, in Fundamentals of Tribology and Bridging the Gap between the Macro- and Micro/Nanoscale, ed. by B. Bhushan (Kluwer, Dordrecht, 2001)

    Google Scholar 

  3. I.M. Hutchings, Tribology: Friction and Wear of Engineering Materials (CRC Press, Boca Raton, 1992)

    Google Scholar 

  4. B. Bhushan, Springer Handbook of Nanotechnology (Springer, Berlin, 2004)

    Book  Google Scholar 

  5. B. Bhushan, Principles and Applications of Tribology (John Wiley, New York, 1999)

    Google Scholar 

  6. R. Colaço, in Fundamentals of Friction and Wear on the Nanoscale, ed. by E. Gnecco, E. Meyer (Springer, Berlin, 2006)

    Google Scholar 

  7. B. Bhushan, Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  8. E. Rabinowitz, Friction and Wear of materials (John Wiley, New York, 1965)

    Google Scholar 

  9. E. Gnecco, R. Bennewitz, E. Meyer, Phys. Rev. Lett. 88, 215501 (2002)

    Article  CAS  Google Scholar 

  10. A. Socoliuc, E. Gnecco, R. Bennewitz, E. Meyer, Phys. Rev. B 68, 115416 (2003)

    Article  Google Scholar 

  11. T. Filleter, W. Paul, R. Bennewitz, Phys. Rev. B 73(1–10), 155433 (2006)

    Article  Google Scholar 

  12. M. D’Acunto, Phys. B 405, 793 (2010)

    Article  Google Scholar 

  13. W. Maw, F. Stevens, S.C. Langford, J.T. Dickinson, J. Appl: Phys. 92, 5103 (2002)

    CAS  Google Scholar 

  14. B. Gotsmann, M.A. Lantz, Phys. Rev. Lett. 101, 125501 (2008)

    Article  Google Scholar 

  15. M.A. Lantz, D. Wiesmann, B. Gotsmann, Nat. Nanotechnol. 4, 586 (2009)

    Article  CAS  Google Scholar 

  16. H. Baskaran, B. Gotsmann, A. Sebastian, U. Drechsler, M.A. Lantz, M. Despont, P. Jaroenapibal, R.W. Carpick, Y. Chen, K. Sridharan, Nat. Nanotechnol. 5, 181 (2010)

    Article  Google Scholar 

  17. R. Bassani, M. D’Acunto, Tribol. Int. 33, 443 (2000)

    Article  Google Scholar 

  18. S. Kopta, M. Salmeron, J. Chem. Phys. 113, 8249 (2000)

    Article  CAS  Google Scholar 

  19. M. D’Acunto, Tribol. Int. 36, 553 (2003)

    Article  Google Scholar 

  20. M. D’Acunto, Nanotechnology 15, 793 (2004)

    Google Scholar 

  21. M. D’Acunto, Nanotechnology 17, 2954 (2006)

    Article  Google Scholar 

  22. M. D’Acunto, in Scanning Probe Microscopy in Nanoscience and Nanotechnology, ed. by B. Bhushan (Springer, Berlin, 2010), p. 647

    Chapter  Google Scholar 

  23. A. Pimpinelli, J. Villain, D.E. Wolf, Phys. Rev. Lett. 69, 985 (1992)

    Article  CAS  Google Scholar 

  24. H. Brune, Surf. Sci. Rep. 31, 121 (1998)

    CAS  Google Scholar 

  25. J.A. Venables, D.J. Ball, Proc. R. Soc. Lond. A 322, 331 (1971)

    Article  CAS  Google Scholar 

  26. J.A. Venables, Philos. Mag. 27, 697 (1973)

    Article  CAS  Google Scholar 

  27. S. Ovesson, Phys. Rev. Lett. 88, 116102 (2002)

    Article  Google Scholar 

  28. D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (John Wiley, New York, 1994)

    Google Scholar 

  29. T.R. Mattsson, H. Metiu, Appl. Phys. Lett. 75, 926 (1999)

    Article  CAS  Google Scholar 

  30. J. Lapujoulade, Surf. Sci. Rep. 20, 191 (1994)

    Article  CAS  Google Scholar 

  31. W.W. Mullins, J. Appl. Phys. 28, 333 (1957)

    Article  CAS  Google Scholar 

  32. A.A. Golovin, S.H. Davis, P.W. Voorhees, Phys. Rev. E 68, 056203 (2003)

    Article  CAS  Google Scholar 

  33. Y. Pang, R. Huang, Phys. Rev. B 74, 075413 (2006)

    Article  Google Scholar 

  34. J.-N. Aqua, T. Frisch, A. Verga, Phys. Rev. B 76, 165319 (2007)

    Article  Google Scholar 

  35. B.J. Spencer, S.H. Davis, P.W. Voorhees, Phys. Rev. B 47, 9760 (1993)

    Article  Google Scholar 

  36. K.K. Kalazhokov, Z.K. Kalazhokov, K.B. Khokonov, Technic. Phys. 48, 272 (2003)

    Article  CAS  Google Scholar 

  37. S.M. Cox, P.C. Matthews, Phys. D 175, 196 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The author likes to acknowledge E. Ciulli, F. Dinelli and E. Gnecco for useful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario D’Acunto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

D’Acunto, M. (2011). Surface Growth Processes Induced by AFM Debris Production. A New Observable for Nanowear. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 2. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10497-8_17

Download citation

Publish with us

Policies and ethics