Skip to main content

A Novel Approach for Oxide Scale Growth Characterization: Combining Etching with Atomic Force Microscopy

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology 2

Part of the book series: NanoScience and Technology ((NANO))

  • 3069 Accesses

Abstract

The combination of atomic force microscopy (AFM) analysis of oxide scales before and after chemical etching is presented as a fast, powerful method to gain information on oxide scale growth kinetics. While not limited to the field of ceramics, we chose the thermal oxidation of silicon carbide at high temperatures (1, 400 ∘ C) as an example for the potential of the AFM/etching method. SiC is a promising semiconductor material with many high-temperature applications during which not only simple oxidation, but also crystallization of the initially vitreous silica scale occurs. We demonstrate how AFM/etching analysis of crystalline areas (radialites) yields valuable information on the growth rate of the crystalline and amorphous silica scale. This can be directly translated into a statement on the oxidation passivation potential of a certain oxide scale state/morphology with important consequences for the actual high-temperature application. Also, the influence of impurities is addressed as this is an essential aspect for real-world application of silicon carbide (both, as a refractory and ceramic material).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.E. Saddow, A. Agarwal, Advances in Silicon Carbide Processing and Applications (Artech House Inc., Norwood, 2004), pp. 212

    Google Scholar 

  2. G.L. Harris, Properties of Silicon Carbide, vol. 13, 1st edn. (INSPEC, the Institution of Electrical Engineers, London, 1995), pp. 282

    Google Scholar 

  3. K.A. Schwetz, in Handbook of Ceramic Hard Materials, ed. by R. Riedel. Silicon Carbide Based Hard Materials, vol. 2.(Wiley-VCH, Weilheim, 2000), pp. 683–748

    Google Scholar 

  4. E.J. Opila, D.S. Fox, C.A. Barrett, Cyclic oxidation of monolithic silicon carbide and silicon nitride materials. Ceram. Forum Int. 14(7–8), 367–374 (1993)

    CAS  Google Scholar 

  5. S. Onda, R. Kumar, K. Hara, SiC integrated MOSFETs. Phys. Status Solidi A. 162(1), 369–388 (1997)

    CAS  Google Scholar 

  6. D. Alok, P.K. McLarty, B.J. Baliga, Electrical properties of thermal oxide grown using dry oxidation on p-type 6H-silicon carbide. Appl. Phys. Lett. 65(17), 2177–2178 (1994)

    CAS  Google Scholar 

  7. M.R. Baklanov, M. van Hove, G. Mannaert, S. Vanhaelemeersch, H. Bender, T. Conard, K. Maex, Low temperature oxidation and selective etching of chemical vapor deposition a-SiC:H films. J. Vac. Sci. Technol. B. 18(3), 1281–1287 (2000)

    CAS  Google Scholar 

  8. P. Friedrichs, E. P. Burte, R. Schörner, Dielectric strength of thermal oxides on 6H-SiC and 4H-SiC. Appl. Phys. Lett. 65(13), 1665–1667 (1994)

    CAS  Google Scholar 

  9. J.B. Petit, P.G. Neudeck, L.G. Matus, J.A. Powell, Thermal oxidation of single-crystal silicon carbide: kinetic, electrical, and chemical studies. Springer Proc. Phys. 71(1), 190–196 (1992)

    CAS  Google Scholar 

  10. S. Zaima, K. Onoda, Y. Koide, Y. Yasuda, Effects of oxidation conditions on electrical properties of SiC–SiO2 interfaces. J. Appl. Phys. 68(12), 6304–6308 (1990)

    CAS  Google Scholar 

  11. T. Narushima, A. Goto, T. Hirai, Y. Iguchi, High-temperature oxidation of silicon carbide and silicon nitride. Mater. Trans. 38(10), 821–835 (1997)

    CAS  Google Scholar 

  12. V. Presser, K.G. Nickel, Silica on silicon carbide. Crit. Rev. Solid State Mater. Sci. 33(1), 1–99 (2008)

    CAS  Google Scholar 

  13. V. Haase, G. Kirschstein, H. List, S. Ruprecht, R. Sangster, F. Schröder, W. Töpper, H. Vanecek, W. Heit, J. Schlichting, Si. Silicon. Supplemental Volume B3 (Springer, Berlin, 1986), pp. 545

    Google Scholar 

  14. J.E. Antill, J.B. Warburton, Active to passive transition in the oxidation of SiC. Corros. Sci. 11(1), 337–342 (1971)

    CAS  Google Scholar 

  15. M. Balat, R. Berjoan, G. Pichelin, D. Rochman, High-temperature oxidation of sintered silicon carbide under pure CO2 at low pressure: active–passive transition. Appl. Surf. Sci. 133(1–2), 115–123 (1998)

    CAS  Google Scholar 

  16. A. Goto, H. Homma, T. Hirai, Effect of oxygen partial pressure on the high-temperature oxidation of CVD SiC. Corros. Sci. 44(1), 359–370 (2002)

    CAS  Google Scholar 

  17. P.J. Jorgensen, M.E. Wadsworth, I.B. Cutler, Effects of water vapor on oxidation of silicon carbide. J. Am. Ceram. Soc. 44(6), 258–261 (1961)

    CAS  Google Scholar 

  18. Q.N. Nguyen, E.J. Opila, R.C. Robinson, Oxidation of ultrahigh temperature ceramics in water vapor. J. Electrochem. Soc. 151(10), B558–B562 (2004)

    CAS  Google Scholar 

  19. E.J. Opila, R.E. Hann Jr., Paralinear oxidation of CVD SiC in water vapor. J. Am. Ceram. Soc. 80(1), 197–205 (1997)

    CAS  Google Scholar 

  20. L. Simon, L. Kubler, A. Ermolieff, T. Billon, Oxidation of 6H-SiC(0001). Microelectron. Eng. 48(1), 261–264 (1999)

    CAS  Google Scholar 

  21. M. Sreemany, T.B. Ghosh, B.C. Pai, M. Chakraborty, XPS studies on the oxidation behavior of SiC particles. Mater. Res. Bull. 33(2), 189–199 (1998)

    CAS  Google Scholar 

  22. N. Sieber, T. Seyller, R. Graupner, L. Ley, R. Mikalo, P. Hoffmann, D.R. Batchelor, D. Schmeißer, PES and LEED study of hydrogen- and oxygen-terminated 6H-SiC(0001) and (000–1) surfaces. Appl. Surf. Sci. 184, 278–283 (2001)

    CAS  Google Scholar 

  23. M. Hollering, J. Bernhardt, J. Schardt, A. Ziegler, R. Graupner, B. Mattern, A.P.J. Stampfl, U. Starke, K. Heinz, L. Ley, Electronic and atomic structures of the 6H-SiC (000–1) surface studied by ARPES, LEED, and XPS. Phys. Rev. B. 58(8), 4992–5000 (1998)

    CAS  Google Scholar 

  24. U. Starke, J. Bernhardt, M. Franke, J. Schardt, K. Heinz, Structure and morphology of SiC surfaces studied by LEED, AES, HREELS and STM. Diam. Relat. Mater. 6(1), 1349–1352 (1997)

    CAS  Google Scholar 

  25. A.J. van Bommel, J.E. Crombeen, A. van Tooren, LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 48(1), 463–472 (1975)

    Google Scholar 

  26. T. Goto, H. Homma, High-temperature active/passive oxidation and bubble formation of CVD SiC in O2 and CO2 atmospheres. J. Eur. Ceram. Soc. 22(14–15), 2749–2756 (2002)

    CAS  Google Scholar 

  27. E.A. Gulbransen, K.F. Andrew, F.A. Brassart, The oxidation of silicon carbide at 1150 ∘  to 1400 ∘ C and at 9 ×10 − 3 to 5 ×10 − 1 torr oxygen pressure. J. Electrochem. Soc. 113(12), 1311–1314 (1966)

    CAS  Google Scholar 

  28. J.W. Hinze, H.C. Graham, The active oxidation of Si and SiC in the viscous gas-flow regime. J. Electrochem. Soc. 123(7), 1066–1073 (1976)

    CAS  Google Scholar 

  29. T. Narushima, A. Goto, Y. Iguchi, T. Hirai, High-temperature active oxidation of chemically vapor-deposited silicon carbide in an Ar–O2 atmosphere. J. Am. Ceram. Soc. 74(10), 2583–2586 (1991)

    CAS  Google Scholar 

  30. K.G. Nickel, The role of condensed silicon monoxide in the active-to-passive oxidation transition of silicon carbide. J. Eur. Ceram. Soc. 9(1), 3–8 (1992)

    CAS  Google Scholar 

  31. K.G. Nickel, Y.G. Gogotsi, in Corrosion of Hard Materials, ed. by R. Riedel. Handbook of Ceramic Hard Materials, vol. 1 (Wiley-VCH, Weinheim, 2000), pp. 140–154

    Google Scholar 

  32. B. Schneider, A. Guette, R. Naslain, M. Cataldi, A. Costecalde, A theoretical and experimental approach to the active-to-passive transition in the oxidation of silicon carbide. J. Mater. Sci. 33, 535–547 (1998)

    CAS  Google Scholar 

  33. K.G. Nickel, P. Quirmbach, in Gaskorrosion nichtoxidischer keramischer Werkstoffe,ed. by J. Kriegesmann. Technische Keramische Werkstoffe (Deutscher Wirtschaftsdienst, Köln, 1991), pp. Kapitel 5.4.1.1, p. 1–76

    Google Scholar 

  34. G. Wiebke, Die Oxydation von Siliziumkarbid. Ber. Dtsch. Keram. Ges. 37(5), 219–226 (1960)

    CAS  Google Scholar 

  35. J. Schlichting, Siliciumcarbid als Oxidationsbeständiger Hochtemperaturwerkstoff. Oxidations-und Heißkorrosionsverhalten. I. Ber. Dtsch. Keram. Ges. 56(8), 196–200 (1979)

    CAS  Google Scholar 

  36. J. Schlichting, Siliciumcarbid als Oxidationsbeständiger Hochtemperaturwerkstoff. Oxidations-und Heißkorrosionsverhalten. II. Ber. Dtsch. Keram. Ges. 56(8), 156–261 (1979)

    Google Scholar 

  37. K.G. Nickel, Y.G. Gogotsi, Hydrothermal degradation of chemical vapor deposited SiC fibres. J. Mater. Sci. 33, 4357–4364 (1998)

    Google Scholar 

  38. T. Kraft, K.G. Nickel, in Hydrothermal Carbon Coatings of Alpha-SiC Crystals, ed. by H. Dimigen. Surface Engineering – EUROMAT 99, vol. 11 (Wiley-VCH, Weilheim, 1999), pp. 306–311

    Google Scholar 

  39. T. Kraft, K.G. Nickel, Carbon formed by hydrothermal treatment of α-SiC crystals. J. Mater. Chem. 10(3), 671–680 (2000)

    CAS  Google Scholar 

  40. E.G. Stein von Kamienski, F. Portheine, J. Stein, A. Gölz, H. Kurz, Charge trapping in dry and wet oxides on N-type 6H-SiC studied by Fowler-Nordheim charge in-jection. J. Appl. Phys. 79(5), 2529–2534 (1996)

    CAS  Google Scholar 

  41. N.S. Jacobson, A.J. Eckel, A.K. Misra, D.L. Humphrey, Reactions of SiC with H2/H2O/Ar Mixtures at 1300 ∘ C. J. Am. Ceram. Soc. 73(8), 2330–2332 (1990)

    CAS  Google Scholar 

  42. A.H. Heuer, V.L.K. Lou, Volatility diagrams for silica silicon nitride and silicon carbide and their application to high-temperature decomposition and oxidation. J. Am. Ceram. Soc. 73(10), 2785–3128 (1990)

    CAS  Google Scholar 

  43. E.J. Opila, Q.N. Nguyen, Oxidation of chemically-vapor-deposited silicon carbide in carbon dioxide. J. Am. Ceram. Soc. 81(7), 1949–1952 (1998)

    CAS  Google Scholar 

  44. J.E. Antill, J.B. Warburton, Oxidation of silicon and silicon carbide in gaseous atmospheres at 1000 ∘ C – 1300 ∘ C. In Proceedings of the AGARD Conference Proceedings No. 52, 1970, pp. 10

    Google Scholar 

  45. E. Fitzer, R. Ebi, in Kinetic Studies on the Oxidation of Silicon Carbide, ed. by K.L. Marshall, T.W. Faust, C.E. Ryan. Silicon Carbide (South Carolina University Press, Columbia, SC, 1973), pp. 320–328

    Google Scholar 

  46. C. Önneby, C.G. Pantano, Silicon oxycarbide on SiC surfaces and at the SiC∕SiO2 interface. Vac. Sci. Technol. A. 15(3), 1597–1602 (1997)

    Google Scholar 

  47. R. Pampuch, W. Ptak, S. Jonas, J. Stoch, Formation of ternary Si-O-C phase(s) during oxidation of SiC. Mater. Sci. Monogr. 6(1), 435–448 (1980)

    CAS  Google Scholar 

  48. B. Hornetz, H.-J. Michel, J. Halbritter, ARXPS studies of SiO2 – SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(00–1) surfaces. J. Mater. Res. 6(12), 3088–3094 (1994)

    Google Scholar 

  49. B. Hornetz, H.-J. Michel, J. Halbritter, Oxidation and 6H-SiC–SiO2 interfaces. J. Vac.Sci. Technol. A. 13(3), 767–771 (1995)

    CAS  Google Scholar 

  50. G. Lucovsky, H. Niimi, A. Gölz, H. Kurz, Differences between silicon oxycarbide regions at SiC–SiO2 prepared by plasma-assisted oxidation and thermal oxidations. Appl. Surf. Sci. 123/124(1), 435–439 (1998)

    Google Scholar 

  51. G. Lucovsky, H. Niimi, Remote plasma-assited oxidation of SiC: a low temperature process for SiC–SiO2 interface formation that eliminates interfacial Si oxycaribde transition regions. J. Phys. Condens. Matter. 16(1), S1815–S1837 (2004)

    CAS  Google Scholar 

  52. E. Opila, Influence of alumina reaction tube impurities on the oxidation of chemically-vapor-deposited silicon carbide. J. Am. Ceram. Soc. 78(4), 1107–1110 (1995)

    CAS  Google Scholar 

  53. E.J. Opila, D.L. Myers, Alumina volatility in water vapor at elevated temperatures. J. Am. Ceram. Soc. 87(9), 1701–1705 (2004)

    CAS  Google Scholar 

  54. K.A. Schwetz, H. Werheit, E. Nold, Sintered and monocrystalline black and green silicon carbide – chemical composition and optical properties. Ber. Dtsch. Keram. Ges. 80(12), E37–E44 (2003)

    CAS  Google Scholar 

  55. L.U.J.T. Ogbuji, E.J. Opila, A comparison of the oxidation kinetics of SiC and Si3N4. J. Electrochem. Soc. 142(3), 925–930 (1995)

    CAS  Google Scholar 

  56. K. Motzfeld, On the rates of oxidation of silicon and of silicon carbide in oxygen and correlation with permeability of silica glass. Acta Chem. Scand. 18(7), 1595–1606 (1964)

    Google Scholar 

  57. C.E. Ramberg, G. Cruiciani, K.E. Spear, R.E. Tressler, C.F. Ramberg Jr., Passive-oxidation kinetics of high-purity silicon carbide from 800 ∘  to 1100 ∘ C. J. Am. Ceram. Soc. 79(11), 2897–2911 (1996)

    Google Scholar 

  58. K. Christiansen, R. Helbig, Anisotropic oxidation of 6H-SiC. J. Appl. Phys. 79(6), 3276–3281 (1996)

    CAS  Google Scholar 

  59. N.G. Wright, C.M. Johnson, A.G. O’Neill, Mechanistic model for oxidation of SiC. Mater. Sci. Eng. B. B61–62(1), 468–471 (1999)

    Google Scholar 

  60. N.G. Wright, C.M. Johnson, A.G. O’Neill, Oxidation modelling for SiC. Mater. Res. Soc. Symp. Proc. 572(1), 135–140 (1999)

    CAS  Google Scholar 

  61. D. Lipinski, H.E. Schwiete, Die Bildung des Cristobalits aus amorphem Siliziumdioxid unter verschiedenen Gasatmosphären. Tonindustrie-Zeitung Keram. Rundschau. 88(7/8; 10; 11/12), 145–153; 217–225; 258–262 (1964)

    Google Scholar 

  62. N.G. Ainslie, C.R. Morelock, D. Turnbull, in Devitrification Kinetics of Fused SiO 2, ed. by M.K. Reser, G. Smith, H. Insley. Proceedings of the Symposium on Nucleation and Crystallization in Glasses and Melts, Columbus, 1962, pp. 97–107

    Google Scholar 

  63. K.L. More, P.F. Tortorelli, M.K. Ferber, J.R. Keiser, Observations of accelerated silicon carbide ression by oxidation at high water-vapor pressures. J. Am. Ceram. Soc. 83(1), 211–213 (2000)

    CAS  Google Scholar 

  64. J.H. Oehler, Hydrothermal crystallization of silica gel. Geol. Soc. Am. Bull. 87(1), 1143–1152 (1976)

    CAS  Google Scholar 

  65. F.E. Wagstaff, S.D. Brown, I.B. Cutler, The influence of H2O and O2 atmospheres on the crystallization of vitreous silica. Phys. Chem. Glasses. 5(3), 76–81 (1964)

    CAS  Google Scholar 

  66. P. Donnadieu, Influence of impurities on plastic flow of silica glass. J. Non-Cryst. Solids. 99(1), 113–117 (1988)

    CAS  Google Scholar 

  67. W. Göpel, C. Ziegler, Einführung in die Materialwissenschaften: Physikalisch-chemische Grundlagen und Anwendungen (Teubner, Stuttgart, 1996), pp. 490

    Google Scholar 

  68. R. Ebi, Hochtemperaturoxidation von Siliziumkarbid und Siliziumnitrid in technischen Ofenatmosphären. In Fakultät für Chemiewesen, PhD (Universität Karlsruhe, Karlsruhe, 1973), pp. 123

    Google Scholar 

  69. E. Gugel, H.W. Hennicke, P. Schuster, Zur Bildung der SiO2-Schicht auf SiC. Ber. Dtsch. Keram. Ges. 46(9), 481–485 (1969)

    CAS  Google Scholar 

  70. A.H. Heuer, L.U.J.T. Ogbuji, T.E. Mitchell, The microstructure of oxide scales on oxidized Si and SiC single crystals. J. Am. Ceram. Soc. 63(5–6), 354–355 (1980)

    CAS  Google Scholar 

  71. V. Presser, A. Loges, R. Wirth, K.G. Nickel, Microstructural evolution of silica on single crystal silicon carbide. Part II: Influence of impurities and defects. J. Am. Ceram. Soc. 92(8), 1796–1805 (2009)

    CAS  Google Scholar 

  72. V. Presser, A. Loges, Y. Hemberger, K.G. Nickel, Microstructural evolution of silica on single-crystal silicon carbide. Part I: Devitrification and oxidation rates. J. Am. Ceram. Soc. 92(3), 724–731 (2009)

    CAS  Google Scholar 

  73. L. Filipuzzi, R. Naslain, C. Jaussaud, Oxidation kinetics of SiC deposited from CH3SiCl3 ∕ H2 under CVI conditions. J. Mater. Sci. 27(12), 3330–3334 (1992)

    CAS  Google Scholar 

  74. H.D. Keith, F.J. Padden Jr., A phenomenological theory of spherulitic crystallization. J. Appl. Phys. 34(8), 2409–2421 (1963)

    CAS  Google Scholar 

  75. S.D. Pantsukrin, D.V. Kalinin, Kinetics and mechanism of formation of alpha-cristobalite spherulites. Seriya Khim. Nauk. 1, 27–31 (1988)

    Google Scholar 

  76. S.W. Freiman, G.Y. Onoda Jr., A.G. Pincus, Spherulitic crystallization in glasses. In Proceedings of the Symposium of the Glass Division of the American Ceramic Society, Ohio, 1971, pp. 141–150

    Google Scholar 

  77. M.H. Lewis, J. Metcalf-Johansen, P.S. Bell, Crystallization mechanisms in glass-ceramics. J. Am. Ceram. Soc. 62(5–6), 278–288 (1979)

    CAS  Google Scholar 

  78. R.H. Doremus, Glass Science, 2nd edn. (Wiley, New York, 1994), pp. 339

    Google Scholar 

  79. M.J.-F. Guinel, M.G. Norton, Oxidation of silicon caribde and the formation of silica polymorphs. J. Mater. Res. 21(10), 2550–2563 (2006)

    CAS  Google Scholar 

  80. H. Li, M. Tomozawa, V.K. Lou, Effects of nitrogen and carbon ion implantation on devitrification of silica glasses. J. Non-Cryst. Solids. 168(1), 56–63 (1993)

    Google Scholar 

  81. F.E. Wagstaff, K.J. Richards, Kinetics of crystallization of stoichiometric SiO2 glass in H2O atmospheres. J. Am. Ceram. Soc. 49(3), 118–121 (1966)

    CAS  Google Scholar 

  82. E.J. Opila, Variation of the oxidation rate of silicon carbide with water-vapor pressure. J. Am. Ceram. Soc. 82(3), 625–636 (1999)

    CAS  Google Scholar 

  83. O.W. Flörke, Die Modifikationen von SiO2. Fortschr. Mineral. 44(2), 181–230 (1967)

    Google Scholar 

  84. H. Strunz, E.H. Nickel, Strunz Mineralogical Tables, 9th edn. (Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 2001), pp. 870

    Google Scholar 

  85. N.R. Keskar, J.R. Chelikowsky, Structural properties of nine silica polymorphs. Phys. Rev. B. 46(1), 1–13 (1992)

    CAS  Google Scholar 

  86. D.R. Peacor, High-temperature single-crystal study of the cristobalite inversion. Z. Kristallogr. 138(1), 274–298 (1973)

    CAS  Google Scholar 

  87. L.U.J.T. Ogbuji, Development of oxide scale microstructure on single-crystal SiC. J. Mater. Sci. 16(1), 2753–2759 (1981)

    CAS  Google Scholar 

  88. Z. Zheng, R.E. Tressler, K.E. Spear, The effect of sodium contamination on the oxidation of single crystal silicon carbide. Corros. Sci. 33(4), 545–556 (1992)

    CAS  Google Scholar 

  89. A. King, G. Johnson, W. Ludwig, Diffraction contrast tomography – a synchrotron radiation technique for mapping polycrystalline microstructures in 3D. Mater. Sci. Forum. 571–572(1), 207–212 (2008)

    Google Scholar 

  90. K. Thompson, P.L. Flaitz, P. Ronsheim, D.J. Larson, T.F. Kelly, Imaging of arsenic cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science 317(5843), 1370–1374 (2007)

    CAS  Google Scholar 

  91. I. Arslan, E.A. Marquis, M. Homer, M.A. Hekmaty, N.C. Bartelt, Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108(12), 1579–1585 (2008)

    CAS  Google Scholar 

  92. M.B. Johnson, M.E. Zvanut, O. Richardson, HF chemical etching of SiO2 on 4H and 6H SiC. J. Electron. Mater. 29(3), 368–371 (2000)

    CAS  Google Scholar 

  93. S. Dhar, O. Seitz, M.D. Halls, S. Choi, Y.J. Chabal, L.C. Feldman, Chemical properties of oxidized silicon carbide surfaces upon etching in hydrofluoric acid. J. Am. Chem. Soc. 131(46), 16808–16813 (2009)

    CAS  Google Scholar 

  94. S.J. Schoell, M. Hoeb, I.D. Sharp, W. Steins, M. Eickhoff, M. Stutzmann, M.S. Brandt, Functionalization of 6H-SiC surfaces with organosilanes. Appl. Phys. Lett. 92(15), 153301–153303 (2008)

    Google Scholar 

  95. D. Siche, D. Klimm, T. Hölzel, A. Wohlfahrt, Reproducible defect etching of SiC single crystals. J. Cryst. Growth. 270(1), 1–6 (2004)

    CAS  Google Scholar 

  96. S. Dohmae, K. Shibahara, S. Nishino, H. Matsunami, Plasma etching of CVD grown cubic SiC single crystals. Jpn. J. Appl. Phys. 24(11), L873–L875 (1985)

    CAS  Google Scholar 

  97. B. Kim, S. Kim, B.T. Lee, Low pressure plasma etching of silicon carbide. Appl. Phys. A. 81, 793–797 (2005)

    CAS  Google Scholar 

  98. M. Katsuno, N. Ohtani, J. Takahashi, H. Yashiro, M. Kanaya, Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation. Jpn. J. Appl. Phys. 38(1), 4661–4665 (1999)

    CAS  Google Scholar 

  99. W.C. Say, J.K. Wu, W.L. Chen, Hot corrosion of α-SiC ceramics by V2O5 melt. J. Mater. Sci. 25(3), 1614–1617 (1990)

    CAS  Google Scholar 

  100. N.W. Thibault, Morphological and structural crystallography and optical properties of silicon carbide. Part I: Morphological crystallography and etching figures. Am. Mineral. 29(7–8), 249–278 (1944)

    CAS  Google Scholar 

  101. F. Yang, P. Fei, Indentation behavior of silicon carbide etched by KOH. Electrochem. Solid-State Lett. 8(2), G51–G53 (2005)

    CAS  Google Scholar 

  102. W.D. Nesse, Introduction to Optical Mineralogy (Oxford University Press, Oxford, 2005), pp. 362

    Google Scholar 

  103. H.-R. Wenk, A. Bulakh, Minerals: Their Constitution and Origin (Cambridge University Press, Cambridge, 2004), pp. 646

    Google Scholar 

  104. E. Hecht, Optics (Pearson Education Inc., San Francisco, 2002), pp. 698

    Google Scholar 

  105. F. Devynck, F. Giustino, A. Pasquarello, Abrupt model interface for the 4H(1000)SiC-SiO2 interface. Microelectron. Eng. 80(1), 38–41 (2005)

    CAS  Google Scholar 

  106. T. Ohnuma, H. Tsuchida, T. Jikimoto, Interface states in abrupt SiO2/4H- and 6H-SiC(0001) from first-principles: effects of Si dangling bonds, C dangling bonds and C clusters. Mater. Sci. Forum. 457–460(1), 1297–1300 (2004)

    Google Scholar 

  107. R. Ebi, E. Fitzer, K.J. Hüttinger, Oxidationskinetik von SiC-Pulvern bei Temperaturen zwischen 1200 ∘ C und 1600 ∘ C. High Temp. High Press. 4(1), 21–25 (1972)

    CAS  Google Scholar 

  108. K.L. Luthra, Some new perspectives on oxidation of silicon carbide and silicon nitride. J. Am. Ceram. Soc. 74(5), 1095–1103 (1991)

    CAS  Google Scholar 

  109. R.F. Adamsky, Oxidation of silicon carbide in the temperature range 1200 to 1500 ∘ C. J. Phys. Chem. 63(2), 305–307 (1959)

    CAS  Google Scholar 

  110. E.J. Opila, Q.G.N. Nguyen, Oxidation of chemically-vapor-deposited silicon carbide in carbon dioxide. J. Am. Ceram. Soc. 81(7), 1949–1952 (1998)

    CAS  Google Scholar 

  111. I.C. Vickridge, D. Tromson, I. Trimaille, J.-J. Ganem, E. Szilagyi, G. Battistig, Oxygen isotopic exchange occuring during dry thermal oxidation of 6H SiC. Nucl. Instrum. Methods Phys. Res. B. 190(1), 574–578 (2002)

    CAS  Google Scholar 

  112. C.D. Fung, J.J. Kopanski, Thermal oxidation of 3C silicon carbide single-crystal layers on silicon. Appl. Phys. Lett. 45(7), 757–759 (1984)

    CAS  Google Scholar 

  113. V.V. Afanas’ev, M. Bassler, G. Pensl, M. Schulz, Intrinsic SiC∕SiO2 interface states. Phys. Status Solidi A. 162(1), 321–337 (1997)

    Google Scholar 

  114. J.-J. Ganem, I. Trimaille, P. Andre, S. Rigo, Diffusion of near surface defects during the thermal oxidation of silicon. J. Appl. Phys. 81(12), 8109–8111 (1997)

    CAS  Google Scholar 

  115. B.E. Deal, A.S. Grove, General relationship for the thermal oxidation of silicon. J. Appl. Phys. 36(12), 3770–3778 (1965)

    CAS  Google Scholar 

  116. D. Schmeißer, D.R. Batchelor, R.P. Mikalo, P. Hoffmann, A. Lloyd-Spetz, Oxide growth on SiC(0001) surfaces. Appl. Surf. Sci. 184(1–4), 340–345 (2001)

    Google Scholar 

  117. C. Raynaud, Silica films on silicon carbide: a review of electrical properties and device applications. J. Non-Cryst. Solids. 280(1), 1–31 (2001)

    CAS  Google Scholar 

  118. J. Rodriguez-Viejo, F. Sibieude, M.T. Clavaguera-Mora, C. Monty, 18O diffusion through amorphous SiO2 and cristobalite. Appl. Phys. Lett. 63(14), 1906–1908 (1993)

    CAS  Google Scholar 

  119. L.U.J.T. Ogbuji, Effect of oxide devitrification on oxidation kinetics of SiC. J Am Ceram Soc, 80(6), 1544–1550 (1997)

    CAS  Google Scholar 

  120. F.E. Wagstaff, Crystallization and melting kinetics of cristobalite. J. Am. Ceram. Soc. 52(12), 650–654 (1969)

    CAS  Google Scholar 

  121. C. Berthold, Degradation von Si3N4 als Ventilwerkstoff durch Oxidation und Salzschmelzkorrosion bei Ensatztemperaturen (Shaker Verlag, Aachen, 1998), pp. 145

    Google Scholar 

Download references

Acknowledgements

V.P. gratefully acknowledges the financial support of the Alexander-von-Humboldt-Foundation (Feodor-Lynen scholarship). Dr. Richard Wirth is thanked for his kind help with the HR-TEM analyses. Dipl.-Min. Yannick Hemberger kindly assisted with the AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Presser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Presser, V., Loges, A., Nickel, K.G. (2011). A Novel Approach for Oxide Scale Growth Characterization: Combining Etching with Atomic Force Microscopy. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 2. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10497-8_12

Download citation

Publish with us

Policies and ethics