Skip to main content

Time-Resolved Tapping-Mode Atomic Force Microscopy

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Atomic force microscopy has unprecedented potential for quantitative mapping of material-specific surface properties on the nanoscale. Unfortunately, methods developed for local stiffness measurements suffer from low operational speeds and they require large forces to be applied to the surface, limiting resolution and precluding measurements on soft materials such as polymers and biological samples. On the other hand, tapping-mode AFM, which is well suited to soft materials due to its gentle interaction with the surface, cannot be used to recover information on the tip–sample interaction (and hence, on the material properties) due to limited mechanical bandwidth offered by the resonant AFM probe. In this chapter, a technique, called Time-resolved Tapping-mode Atomic Force Microscopy, designed for rapid quantitative material characterization on the nanoscale is described. The technique is based on time-resolved measurement of tip–sample interaction forces during tapping-mode AFM imaging by a specially designed micromachined AFM probe. The probe has an integrated high-bandwidth interferometric force sensor that is used to resolve tip–sample interaction forces with high sensitivity and temporal resolution. In the first part of the chapter, the theory, design, and fabrication of the probes are described in detail. Then quantitative force measurements with microsecond time resolution in tapping-mode imaging are presented. Finally, higher harmonic images based on the interaction force measurements are presented for various samples, demonstrating the range of applications of the technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986)

    Article  Google Scholar 

  2. F.J. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart, Subatomic features on the silicon (111)-(7 ×7) surface observed by atomic force microscopy. Science 289, 422 (2000)

    Article  CAS  Google Scholar 

  3. N.A. Burnham, R. J. Colton, Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J. Vac. Sci. Technol. A 7, 2906 (1989)

    Article  CAS  Google Scholar 

  4. M. Radmacher, J.P. Cleveland, M. Fritz, H.G. Hansma, P.K. Hansma, Mapping interaction forces with the atomic force microscope. Biophys. J. 66, 2159 (1994)

    Article  CAS  Google Scholar 

  5. K. Yamanaka, H. Ogiso, O. Kolosov, Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64, 178 (1994)

    Article  CAS  Google Scholar 

  6. O.V. Kolosov, M.R. Castell, C.D. Marsh, G.A.D. Briggs, T.I. Kamins, R.S. Williams, Imaging the elastic nanostructure of Ge Islands by ultrasonic force microscopy. Phys. Rev. Lett. 81, 1046 (1998)

    Article  CAS  Google Scholar 

  7. A. Rosa-Zeiser, E. Weilandt, S. Hild, O. Marti, The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas. Sci. Technol. 8, 1333 (1997)

    Article  CAS  Google Scholar 

  8. H. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, O. Marti, Pulsed force mode: a new method for the investigation of surface properties. Surf. Interface Anal. 27, 336 (1999)

    Article  CAS  Google Scholar 

  9. P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma, Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2, 103 (1991)

    Article  Google Scholar 

  10. M. Radmacher, R.W. Tillmann, H.E. Gaub, Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys. J. 64, 735 (1993)

    Article  CAS  Google Scholar 

  11. Q. Zhong, D. Inniss, K. Kjoller, V.B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. 290, 688 (1993)

    Article  Google Scholar 

  12. C. Moller, M. Allen, V. Elings, A. Engel, D.J. Muller, Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys. J. 77(2), 1150–1158 (1999)

    Article  CAS  Google Scholar 

  13. D.A. Chernoff, Proceedings of Microscopy and Microanalysis 1995 (Jones and Begell, New York, 1995)

    Google Scholar 

  14. S.N. Magonov, V. Elings, V. S. Papkov, AFM study of thermotropic structural transitions in poly(diethylsiloxane). Polymer 38, 297 (1997)

    Article  CAS  Google Scholar 

  15. M. Stark, R.W. Stark, W.M. Heckl, and R. Guckenberger, Inverting dynamic force microscopy: From signals to time-resolved interaction forces. PNAS 99, 8473 (2002)

    Article  CAS  Google Scholar 

  16. J. Legleiter, M. Park, B. Cusick, T. Kowalewski, Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale. PNAS 103, 4813 2006)

    Article  CAS  Google Scholar 

  17. O. Sahin, G. Yaralioglu, R. Grow, S.F. Zappe, A. Atalar, C.F. Quate, O. Solgaard, High resolution imaging of elastic properties using harmonic cantilevers. Sens. Actuators A 114, 183 (2004)

    Article  Google Scholar 

  18. S. Sadewasser, G. Villanueva, J.A. Plaza, Special cantilever geometry for the access of higher oscillation modes in atomic force microscopy. Appl. Phys. Lett. 89, 033106 (2006)

    Article  Google Scholar 

  19. R. Proksch, Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy. Appl. Phys. Lett. 89, 113121 (2006)

    Article  Google Scholar 

  20. A.G. Onaran, M. Balantekin, W. Lee, W.L. Hughes, B.A. Buchine, R.O. Guldiken, Z. Parlak, C.F. Quate, F.L. Degertekin, A new atomic force microscope probe with force sensing integrated readout and active tip. Rev. Sci. Instrum. 77, 023501 (2006)

    Article  Google Scholar 

  21. M. Balantekin, A.G. Onaran, F.L. Degertekin, Quantitative mechanical characterization of materials at the nanoscale through direct measurement of time-resolved tip-sample interaction forces. Nanotechnology 19, 085704 (2008)

    Article  Google Scholar 

  22. O. Sahin, S. Magonov, C. Su, C.F. Quate, O. Solgaard, An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat. Nanotechnol. 2, 507 (2007)

    Article  Google Scholar 

  23. O. Sahin, N. Erina, High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology 19, 445717 (2008)

    Article  Google Scholar 

  24. A.F. Sarioglu, O. Solgaard, Cantilevers with integrated sensor for time-resolved force measurement in tapping-mode atomic force microscopy. Appl. Phys. Lett. 93, 023114 (2008)

    Article  Google Scholar 

  25. A.F. Sarioglu, M. Liu, O. Solgaard, Interferometric force sensing AFM probes for nanomechanical mapping of material properties, in Proceedings of the 15th International Conference on Solid-State Sensors, Actuators and Microsystems – IEEE Transducers, Denver, CO, USA, 2009, pp. 1634–1637

    Google Scholar 

  26. R. Garcia, A. San Paulo, Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys. Rev. B 60, 4961 (1999)

    Article  CAS  Google Scholar 

  27. J. Israelachvili, Intermolecular and Surface Forces (Academic, London, 2003)

    Google Scholar 

  28. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314 (1975)

    Article  CAS  Google Scholar 

  29. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon, New York, 1986)

    Google Scholar 

  30. J. Tamayo, R. Garcia, Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 12, 4430 (1996)

    Article  CAS  Google Scholar 

  31. A.S. Paulo, R. Garcia, Unifying theory of tapping mode atomic force microscopy. Phys. Rev. B 66, 041406 (2002)

    Article  Google Scholar 

  32. A.S. Paulo, R. Garcia, Tip-surface forces, amplitude, and energy dissipation in amplitude modulation (tapping mode) force microscopy. Phys. Rev. B. 64, 193411 (2001)

    Article  Google Scholar 

  33. J. Chen, R.K. Workman, D. Sarid, R. Hoper, Numerical simulations of a scanning force microscope with a large-amplitude vibrating cantilever. Nanotechnology 5, 199 (1994)

    Article  Google Scholar 

  34. S.I. Lee, S.W. Howell, A. Raman, R. Reifenberger, Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment. Phys. Rev. B 66, 115409 (2002)

    Article  Google Scholar 

  35. T.R. Rodriguez, R. Garcia, Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: Comparison between continuous and point-mass models. Appl. Phys. Lett. 80, 1646 (2002)

    Article  CAS  Google Scholar 

  36. O. Sahin, A. Atalar, Analysis of tip-sample interaction in tapping-mode atomic force microscope using an electrical circuit simulator. Appl. Phys. Lett. 78, 2973 (2001)

    Article  CAS  Google Scholar 

  37. M. Balantekin, A. Atalar, Power dissipation analysis in tapping-mode atomic force microscopy. Phys. Rev. B 67, 193404 (2003)

    Article  Google Scholar 

  38. O. Solgaard, F.S.A. Sandejas, D.M. Bloom, Deformable grating optical modulator. Opt. Lett. 17, 688 (1992)

    CAS  Google Scholar 

  39. S.R. Manalis, S.C. Minne, A. Atalar, C.F. Quate, Interdigital cantilevers for atomic force microscopy. Appl. Phys. Lett. 69, 3944 (1996)

    Article  CAS  Google Scholar 

  40. G.G. Yaralioglu, A. Atalar, S.R. Manalis, C.F. Quate, Analysis and design of an interdigital cantilever as a displacement sensor. J. Appl. Phys. 83, 7405 (1998)

    Article  CAS  Google Scholar 

  41. R.J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972)

    Google Scholar 

  42. O. Solgaard, Photonic Microsystems, Chapter 10.5 (Springer, Heidelberg, 2009)

    Google Scholar 

  43. O. Sahin, A. Atalar, C.F. Quate, O. Solgaard, Resonant harmonic response in tapping-mode atomic force microscopy. Phys. Rev. B. 69, 165416 (2004)

    Article  Google Scholar 

  44. B.E. Deal, A.S. Grove, General Relationship for the Thermal Oxidation of Silicon. J. Appl. Phys. 36, 3770 (1965)

    Article  CAS  Google Scholar 

  45. T.S. Ravi, R.B. Marcus, D. Liu, Oxidation sharpening of silicon tips. J. Vac. Sci. Technol. B 9, 2733 (1991)

    Article  CAS  Google Scholar 

  46. G. Meyer, N.M. Amer, Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045 (1988)

    Article  Google Scholar 

  47. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P.K. Hansma, M. Longmire, J. Gurley, An atomic-resolution atomic-force microscope implemented using an optical lever. J. Appl. Phys. 65, 164 (1989)

    Article  CAS  Google Scholar 

  48. Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J. Appl. Phys. 61, 4723 (1987)

    Article  CAS  Google Scholar 

  49. D. Rugar, H.J. Mamin, P. Guethner, Improved fiber-optic interferometer for atomic force microscopy. Appl. Phys. Lett. 55, 2588 (1989)

    Article  CAS  Google Scholar 

  50. M. Tortonese, R.C. Barrett, C.F. Quate, Atomic resolution with an atomic force microscope using piezoresistive detection. Appl. Phys. Lett. 62, 834 (1993)

    Article  CAS  Google Scholar 

  51. J.L. Hutter, J. Bechhoefer, Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868 (1993)

    Article  CAS  Google Scholar 

  52. B. Ohler, Cantilever spring constant calibration using laser Doppler vibrometry. Rev. Sci. Instrum. 78, 063701 (2007)

    Article  Google Scholar 

  53. R.W. Stark, W.M. Heckl, Higher harmonics imaging in tapping-mode atomic-force microscopy. Rev. Sci. Instrum. 74, 5111 (2003)

    Article  CAS  Google Scholar 

  54. J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings, Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72, 2613 (1998)

    Article  CAS  Google Scholar 

  55. G.E. Poirier, E.D. Pylant, The self-assembly mechanism of alkanethiols on Au(111). Science 272, 1145 (1996)

    Article  CAS  Google Scholar 

  56. M. Liu, N.A. Amro, G. Liu, Nanografting for surface physical chemistry. Annu. Rev. Phys. Chem. 59, 367 (2008)

    Article  CAS  Google Scholar 

  57. S.N. Magonov, D.H. Reneker, Characterization of polymer surfaces with atomic force microscopy. Annu. Rev. Mater. Sci. 27, 175 (1997)

    Article  CAS  Google Scholar 

  58. L. Leibler, Theory of microphase separation in block copolymers. Macromolecules 13, 1602 (1980)

    Article  CAS  Google Scholar 

  59. S.N. Magonov, J. Cleveland, V. Elings, D. Denley, M.-H. Whangbo, Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film. Surf. Sci. 389, 201 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Fatih Sarioglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarioglu, A.F., Solgaard, O. (2011). Time-Resolved Tapping-Mode Atomic Force Microscopy. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 2. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10497-8_1

Download citation

Publish with us

Policies and ethics