Skip to main content

The Role of Cyclic Nucleotide-Gated Channels in Cation Nutrition and Abiotic Stress

  • Chapter
  • First Online:
Ion Channels and Plant Stress Responses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

The plant cyclic nucleotide-gated channels (CNGCs) are a large family of ion channels that are regulated by both cyclic nucleotides (CNs) and calmodulin (CaM). CNGCs are generally permeable to a wide range of cations, including the essential macronutrients K+ and Ca2+, as well as potentially toxic cations such as Na+ or Pb2+. Several members of the CNGC family have been implicated in the uptake of cations and/or their subsequent distribution across plant organs. Others may participate in plant responses to salinity and abiotic stress by mediating Ca2+ signaling. Some CNGCs localize to the plasma membrane (PM) whereas others localize to intracellular membranes such as the tonoplast, and may therefore regulate the sequestration and release of cations among intracellular stores. It thus appears that plants have adapted certain CNGCs for specialized roles in maintaining cellular cation homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKT:

Arabidopsis K+ transporter

AtKC1:

Arabidopsis thaliana K+ channel 1

AtNHX7:

A. thaliana Na+/H+ exchanger 7

AtSOS1:

A. thaliana salt overly sensitive 1

CaM:

Calmodulin

CaMBD:

Calmodulin-binding domain

CAMP:

3′,5′-Cyclic adenyl monophosphate

CGMP:

3′,5′-Cyclic guanyl monophosphate

CML:

CaM-like

CN:

Cyclic nucleotide

CNBD:

Cyclic nucleotide-binding domain

CNGA:

Cyclic nucleotide-gated channel subunit type A

CNGB:

Cyclic nucleotide-gated channel subunit type B

CNGC:

Cyclic nucleotide-gated channel

CNTE:

Cyclic nucleotide-dependent thioesterase

DEPC:

Diethyl pyrocarbonate

EAG:

Ether-a-go-go

EGTA:

Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid

ER:

Endoplasmic reticulum

GLR:

Glutamate receptor

GORK:

Gated outwardly-rectifying K+ channel

GUS:

β-Glucuronidase

HACC:

Hyperpolarization-activated Ca2+ channel

HCN:

Hyperpolarization-activated cyclic nucleotide-gated

HEK:

Human embryonic kidney

HvCBT1:

Hordeum vulgare calmodulin-binding transporter 1

KAT:

K+ transporter of Arabidopsis thaliana

KUP:

K+ uptake transporter

MPSS:

Massively parallel signature sequencing

NSCC:

Nonselective cation channel

NtCBP4:

Nicotiana tabacum calmodulin-binding protein 4

PM:

Plasma membrane

ROS:

Reactive oxygen species

SKOR:

Stelar K+ outward rectifier

TPM:

Transcripts per million

VI-NSCC:

Voltage-insensitive nonselective cation channel

References

  • Ali R, Zielinski RE, Berkowitz GA (2006) Expression of plant cyclic nucleotide-gated cation channels in yeast. J Exp Bot 57:125–138

    Article  CAS  PubMed  Google Scholar 

  • Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis cyclic nucleotide gated channel2 and innate immunity. Plant Cell 19:1081–1095

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  CAS  PubMed  Google Scholar 

  • Arazi T, Kaplan B, Fromm H (2000) A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol Biol 42:591–601

    Article  CAS  PubMed  Google Scholar 

  • Balagué C, Lin B, Alcon C, Flottes G, Malmström S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379

    Article  PubMed  Google Scholar 

  • Baxter J, Moeder W, Urquhart W, Shahinas D, Chin K, Christendat D, Kang HG, Angelova M, Kato N, Yoshioka K (2008) Identification of a functionally essential amino acid for Arabidopsis cyclic nucleotide gated ion channels using the chimeric AtCNGC11/12 gene. Plant J 56:457–469

    Article  CAS  PubMed  Google Scholar 

  • Becker JD, Feijó JA (2007) How many genes are needed to make a pollen tube? Lessons from transcriptomics. Ann Bot 100:1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Borsics T, Webb D, Andeme-Ondzighi C, Staehelin LA, Christopher DA (2007) The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta 225:563–573

    Article  CAS  PubMed  Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    Article  CAS  PubMed  Google Scholar 

  • Bridges D, Fraser ME, Moorhead GB (2005) Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes. BMC Bioinformatics 6:6

    Article  PubMed  Google Scholar 

  • Britto DT, Kronzucker HJ (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534

    Article  CAS  PubMed  Google Scholar 

  • Broillet MC (2000) A single intracellular cysteine residue is responsible for the activation of the olfactory cyclic nucleotide-gated channel by NO. J Biol Chem 275:15135–15141

    Article  CAS  PubMed  Google Scholar 

  • Chan CW, Schorrak LM, Smith RK Jr, Bent AF, Sussman MR (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol 132:728–731

    Article  CAS  PubMed  Google Scholar 

  • Chang F, Yan A, Zhao LN, Wu WH, Yang Z (2007) A putative calcium-permeable cyclic nucleotide-gated channel, CNGC18, regulates polarized pollen tube growth. J Integr Plant Biol 49:1261–1270

    Article  CAS  Google Scholar 

  • Christopher DA, Borsics T, Yuen CY, Ullmer W, Andème-Ondzighi C, Andres MA, Kang BH, Staehelin LA (2007) The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biol 7:48

    Article  PubMed  Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK Jr, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97:9323–9328

    Article  CAS  PubMed  Google Scholar 

  • Davenport RJ, Tester M (2000) A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol 122:823–834

    Article  CAS  PubMed  Google Scholar 

  • Delumeau O, Morère-le Paven MC, Montrichard F, Laval-Martin DL (2002) Effects of short-term NaCl stress on calmodulin transcript levels and calmodulin-dependent NAD kinase activity in two species of tomato. Plant Cell Environ 23:329–336

    Article  Google Scholar 

  • Demidchik V, Maathuis FJ (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Bowen HC, Maathuis FJ, Shabala SN, Tester MA, White PJ, Davies JM (2002a) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant J 32:799–808

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Davenport RJ, Tester M (2002b) Nonselective cation channels in plants. Annu Rev Plant Biol 53:67–107

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J Cell Sci 116:81–88

    Article  CAS  PubMed  Google Scholar 

  • Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Rains DW, Elzam OE (1963) Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA 49:684–692

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Läuchli A (1983) Sodium versus potassium: substitution and compartmentation. In: Läuchli A, Bieleski RL (eds) Encyclopedia of plant physiology, new series, vol. 15B: Inorganic plant nutrition. Springer, Berlin, pp 651–681

    Google Scholar 

  • Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF (2007) A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci USA 104:14531–14536

    Article  CAS  PubMed  Google Scholar 

  • Frings S (1999) Tuning Ca2+ permeation in cyclic nucleotide-gated channels. J Gen Physiol 113:795–798

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100:11116–11121

    Article  CAS  PubMed  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM (2006) Arabidopsis thaliana Cyclic Nucleotide Gated Channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800

    Article  CAS  PubMed  Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z (2008) The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol Plant 134:499–507

    Article  CAS  PubMed  Google Scholar 

  • Hampton CR, Bowen HC, Broadley MR, Hammond JP, Mead A, Payne KA, Pritchard J, White PJ (2004) Cesium toxicity in Arabidopsis. Plant Physiol 136:3824–3837

    Article  CAS  PubMed  Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    Article  CAS  PubMed  Google Scholar 

  • Hua BG, Mercier RW, Leng Q, Berkowitz GA (2003a) Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiol 132:1353–1361

    Article  CAS  PubMed  Google Scholar 

  • Hua BG, Mercier RW, Zielinski RE, Berkowitz GA (2003b) Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 41:945–954

    Article  CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134: 75–84

    Article  CAS  Google Scholar 

  • Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    CAS  PubMed  Google Scholar 

  • Köhler C, Neuhaus G (2000) Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Lett 471:133–136

    Article  PubMed  Google Scholar 

  • Köhler C, Merkle T, Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104

    Article  PubMed  Google Scholar 

  • Kurosaki F (1997) Stimulation of Ca2+-pumping ATPase activity in carrot plasma membrane by calmodulin. Phytochemistry 45:1097–1100

    Article  CAS  Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Lau T-C, Stephenson AG (1994) Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and the ability to sire seeds in Cucurbita pepo (Cucurbitaceae). Sex Plant Reprod 7:215–220

    Article  Google Scholar 

  • Lee JS, Mulkey TJ, Evans ML (1983) Gravity-induced polar transport of calcium across root tips of maize. Plant Physiol 73:874–876

    Article  CAS  PubMed  Google Scholar 

  • Leitz G, Kang BH, Schoenwaelder ME, Staehelin LA (2009) Statolith sedimentation kinetics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Arabidopsis columella cells. Plant Cell 21:843–860

    Article  CAS  PubMed  Google Scholar 

  • Leng Q, Mercier RW, Yao W, Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121:753–761

    Article  CAS  PubMed  Google Scholar 

  • Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128:400–410

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Borsics T, Harrington HM, Christopher DA (2005) Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli. Funct Plant Biol 32:643–653

    Article  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Ali R, Berkowitz GA (2006) Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 44:494–505

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJ (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57:1137–1147

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJ (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot (Lond) 84:123–133

    Article  CAS  Google Scholar 

  • Maathuis FJ, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJ, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen S, Green BJ, Li Y, Madagan KL, Sánchez-Fernández R, Forde BG, Palmgren MG, Rea PA, Williams LE, Sanders D, Amtmann A (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35:675–692

    Article  CAS  PubMed  Google Scholar 

  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56:575–589

    Article  CAS  PubMed  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JH, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  Google Scholar 

  • McCormack E, Braam J (2003) Calmodulins and related potential calcium sensors of Arabidopsis. New Phytologist 159:585–598

    Article  CAS  Google Scholar 

  • McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–389

    Article  CAS  PubMed  Google Scholar 

  • Nebenführ A, Frohlick JA, Staehelin AL (2000) Redistribution of Golgi stacks and other organelles during mitosis and cytokinesis in plant cells. Plant Physiol 124:135–151

    Article  PubMed  Google Scholar 

  • Newton RP, Smith CJ (2004) Cyclic nucleotides. Phytochemistry 65:2423–2437

    Article  CAS  PubMed  Google Scholar 

  • Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H (2003a) Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787

    Article  CAS  PubMed  Google Scholar 

  • Pilot G, Pratelli R, Gaymard F, Meyer Y, Sentenac H (2003b) Five-group distribution of the Shaker-like K+ channel family in higher plants. J Mol Evol 56:418–434

    Article  CAS  PubMed  Google Scholar 

  • Plieth C (2005) Calcium: Just another regulator in the machinery of life? Ann Bot (Lond) 96:1–8

    Article  CAS  Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA 104:4730–4735

    Article  CAS  PubMed  Google Scholar 

  • Reddy VS, Ali GS, Reddy AS (2002) Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J Biol Chem 277:9840–9852

    Article  CAS  PubMed  Google Scholar 

  • Schuurink RC, Shartzer SF, Fath A, Jones RL (1998) Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc Natl Acad Sci USA 95:1944–1949

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Eismann E, Ludwig J, Baumann A, Kaupp UB (1999) Molecular determinants of a Ca2+-binding site in the pore of cyclic nucleotide-gated channels: S5/S6 segments control affinity of intrapore glutamates. EMBO J 18:119–130

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665

    Article  CAS  PubMed  Google Scholar 

  • Snedden WA, Fromm H (1998) Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci 3:299–304

    Article  Google Scholar 

  • Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium: a functional plant nutrient. Crit Rev Plant Sci 22:391–416

    Google Scholar 

  • Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN, Maathuis FJM, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533–542

    Article  CAS  PubMed  Google Scholar 

  • Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286–293

    Article  CAS  PubMed  Google Scholar 

  • Urquhart W, Gunawardena AH, Moeder W, Ali R, Berkowitz GA, Yoshioka K (2007) The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Mol Biol 65:747–761

    Article  CAS  PubMed  Google Scholar 

  • Véry AA, Davies JM (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci USA 97:9801–9806

    Article  PubMed  Google Scholar 

  • Volotovski ID, Sokolovsky SG, Molchan OV, Knight MR (1998) Second messengers mediate increases in cytosolic calcium in tobacco protoplasts. Plant Physiol 117:1023–1030

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2000) Mechanisms of cesium uptake by plants. New Phytol 147:241–256

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot (Lond) 92:487–511

    Article  CAS  Google Scholar 

  • Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF (2006) The chimeric Arabidopsis cyclic nucleotide-gated ion channel 11/12 activates multiple pathogen resistance responses. Plant Cell 18:747–763

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Christopher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yuen, C.Y.L., Christopher, D.A. (2010). The Role of Cyclic Nucleotide-Gated Channels in Cation Nutrition and Abiotic Stress. In: Demidchik, V., Maathuis, F. (eds) Ion Channels and Plant Stress Responses. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10494-7_7

Download citation

Publish with us

Policies and ethics