Skip to main content

Potassium and Potassium-Permeable Channels in Plant Salt Tolerance

  • Chapter
  • First Online:
Ion Channels and Plant Stress Responses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Salinity causes billion dollar losses in crop production around the globe and has also a significant social impact on rural communities. To breed salt tolerant crops, a better understanding of mechanisms mediating plant adaptive responses to salinity is needed. Over the last years, evidence has been accumulated suggesting that plants’ ability to maintain a high cytosolic K+/Na+ ratio appears to be critical to plant salt tolerance. This paper reviews molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discuss prospects for breeding for salt tolerance by targeting this trait. We show that K+ channels are instrumental to nearly all aspects of salinity stress signaling and tolerance, and the plant’s ability to control intracellular K+ homeostasis is arguably the most important feature of salt-tolerant species. The molecular identity of key genes, mediating plant adaptive responses to salinity, is analyzed, and the modes of their control are discussed. It is suggested that the major focus of plant physiologists and breeders should be on revealing the specificity of K+ channel regulation under saline conditions and a “fine tuning” of all mechanisms involved in the regulation of K+ homeostasis in plants, including both plasma- and endomembrane channels and transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAX:

Cation/H+ antiporter

CBL:

Calcineurin B-like proteins

CHX:

Chloroplast envelope K+/H+ exchanger

CNGC:

Cyclic nucleotide-gated channel

CIPK:

CBL-interacting protein kinases

FACC:

Fast activating cation channel

FV:

Fast vacuolar channel

GLR:

Glutamate receptor

KIR:

Inward-rectifying K+ channel

KOR:

Outward-rectifying K+ channel

KUP/HAK/KT:

H+/K+ symporter

NHX:

Vacuolar Na+/H+ exchanger

NSCC:

Non-selective cation channel

PCD:

Programmed cell death

PM:

Plasma membrane

ROS:

Reactive oxygen species

SV:

Slow vacuolar channel

TEA:

Tetraethylammonium chloride

TPK/KCO:

Two-pore K+ channel

Trk/HKT:

Na+/K+ symporter

References

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Sanders D (1995) Calcineurin, a type 2B protein phosphatase, modulates the Ca2+ permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell 7:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Amodeo G, Escobar A, Zeiger E (1994) A cationic channel in the guard cell tonoplast of Allium cepa. Plant Physiol 105:999–1006

    CAS  PubMed  Google Scholar 

  • Amtmann A, Amengaud P, Volkov V (2004) Potassium nutrition and salt stress. In: Blatt MR (ed) Membrane transport in plants. Ann Plant Rev, vol. 15. Blackwell, Oxford, UK, pp 293–339

    Google Scholar 

  • Amtmann A, Sanders D (1999) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29:75–112

    Article  CAS  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Arazi T, Kaplan B, Fromm H (2000) A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol Biol 42:591–601

    Article  CAS  PubMed  Google Scholar 

  • Babakov AV, Chelysheva VV, Klychnikov OI, Zorinyanz SE, Trofimova MS, De Boer AH (2000) Involvement of 14–3–3 proteins in the osmotic regulation of H+-ATPase in plant plasma membranes. Planta 211:446–448

    Article  CAS  PubMed  Google Scholar 

  • Balague C, Lin BQ, Alcon C, Flottes G, Malmstrom S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379

    Article  CAS  PubMed  Google Scholar 

  • Barhoumi Z, Djebali W, Chaïbi W, Abdelly C, Smaoui A (2007) Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. J Plant Res 120:529–537

    Article  CAS  PubMed  Google Scholar 

  • Barkla BJ, Pantoja O (1996) Physiology of ion transport across the tonoplast of higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:159–184

    Article  CAS  PubMed  Google Scholar 

  • Basu R, Ghosh B (1991) Polyamines in various rice (Oryza sativa) genotypes with respect to sodium-chloride salinity. Physiol Plant 82:575–581

    Article  CAS  Google Scholar 

  • Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema MRG, Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K, Hedrich R (2004) AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proc Natl Acad Sci USA 101:15621–15626

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz GA, Peters JS (1993) Chloroplast inner-envelope ATPase acts as primary H+ pump. Plant Physiol 102:261–267

    CAS  PubMed  Google Scholar 

  • Bethke PC, Jones RL (1997) Reversible protein phosphorylation regulates the activity of the slow-vacuolar ion channel. Plant J 11:1227–1235

    Article  CAS  Google Scholar 

  • Bihler H, Eing C, Hebeisen S, Roller A, Czempinski K, Bertl A (2005) TPK1 is a vacuolar ion channel different from the slow vacuolar cation channel. Plant Physiol 197:417–424

    Article  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Metabolic engineering for increased salt tolerance – the next step. Austral J Plant Physiol 23:661–666

    Article  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptation to environmental stresses. Plant Cell 7:1099–1111

    Article  CAS  PubMed  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trend Plant Sci 2:48–54

    Article  Google Scholar 

  • Bridges D, Fraser ME, Moorhead GBG (2005) Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes. BMC Bioinformatics 6

    Google Scholar 

  • Brüggemann LI, Pottosin II, Schönknecht G (1998) Cytoplasmic polyamines block the fast-activating vacuolar cation channel. Plant J 16:101–106

    Article  Google Scholar 

  • Brüggemann LI, Pottosin II, Schönknecht G (1999a) Selectivity of the fast activating vacuolar cation channel. J Exp Bot 50:873–876

    Article  Google Scholar 

  • Brüggemann LI, Pottosin II, Schönknecht G (1999b) Cytoplasmic magnesium regulates the fast activating vacuolar cation channel. J Exp Bot 50:1547–1552

    Article  Google Scholar 

  • Bunney TD, van den Wijngaard PWJ, de Boer AH (2002) 14–3–3 protein regulation of proton pumps and ion channels. Plant Mol Biol 50:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Carpaneto A, Cantu AM, Gambale F (1999) Redox agents regulate ion channel activity in vacuoles from higher plant cells. FEBS Lett 442:129–132

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246

    Article  CAS  Google Scholar 

  • Chen ZH, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou MX, Palmgren MG, Newman IA, Shabala S (2007a) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley. Plant Physiol 145:1714–1725

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Zhou MX, Newman IA, Mendham NJ, Zhang GP, Shabala S (2007b) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162

    Article  CAS  Google Scholar 

  • Cheng NH, Pittman JK, Zhu JK, Hirschi KD (2004) The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem 279:2922–2926

    Article  CAS  PubMed  Google Scholar 

  • Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM (2002) Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol Biol Evolut 19:1066–1082

    CAS  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  CAS  PubMed  Google Scholar 

  • Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root's ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59:2697–2706

    Article  CAS  PubMed  Google Scholar 

  • Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661

    Article  CAS  PubMed  Google Scholar 

  • Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol 46:1924–1933

    Article  CAS  PubMed  Google Scholar 

  • Cuin TA, Shabala S (2006) Potassium homeostasis in salinised plant tissues. In: Volkov A (ed) Plant Electrophysiology – Theory and Methods. Springer, Heidelberg, pp 287–317

    Chapter  Google Scholar 

  • Cuin TA, Shabala S (2007a) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225:753–761

    Article  CAS  PubMed  Google Scholar 

  • Cuin TA, Shabala S (2007b) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885

    Article  CAS  PubMed  Google Scholar 

  • Czempinski K, Frachisse JM, Maurel C, Barbier-Brygoo H, Müller-Röber B (2002) Vacuolar membrane localization of the Arabidopsis ‘two-pore’ K+ channel KCO1. Plant J 29:809–820

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53:67–107

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  CAS  PubMed  Google Scholar 

  • Demmig B, Gimmler H (1983) Properties of the isolated intact chloroplast at cytoplasmic K+ concentrations. I. Light-induced cation uptake into intact chloroplasts is driven by an electric potential difference. Plant Physiol 73:169–174

    CAS  Google Scholar 

  • Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127:1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Dobrovinskaya OR, Muñiz J, Pottosin II (1999a) Inhibition of vacuolar ion channels by polyamines. J Membr Biol 167:127–140

    Article  CAS  PubMed  Google Scholar 

  • Dobrovinskaya OR, Muñiz J, Pottosin II (1999b) Asymmetric block of the plant vacuolar Ca2+-permeable channel by organic cations. Eur Biophys J 28:552–563

    Article  CAS  PubMed  Google Scholar 

  • Dreyer I, Antunes S, Hoshi T, Müller-Röber B, Palme K, Pongs O, Reintanz B, Hedrich R (1997) Plant K+ channel alpha-subunits assemble indiscriminately. Biophys J 72:2143–2150

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theoret Appl Genetics 92:448–454

    Article  CAS  Google Scholar 

  • Dvořák J, Noaman MM, Goyal S, Gorham J (1994) Enhancement of the salt tolerance of Triticum turgidum L. by the kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor Applied Genet 87:872–877

    Article  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Fuchs I, Stölzle S, Ivashikina N, Hedrich R (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221:212–221

    Article  CAS  PubMed  Google Scholar 

  • Garufi A, Visconti S, Camoni L, Aducci P (2007) Polyamines as physiological regulators of 14–3–3 interaction with the plant plasma membrane H+-ATPase. Plant Cell Physiol 48:434–440

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola R, Delarrinoa IF, Villalba JM, Serrano R (1992) A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. EMBO J 11:3157–3164

    CAS  PubMed  Google Scholar 

  • Gaxiola RA, Fink GR, Hirschi KD (2002) Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol 129:967–973

    Article  CAS  PubMed  Google Scholar 

  • Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104:10726–10731

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003) Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51:71–81

    Article  CAS  PubMed  Google Scholar 

  • Gorham J, Bristol A, Young EM, Jones RGW (1991) The presence of the enhanced K/Na discrimination trait in diploid triticum species. Theor Appl Genet 82:729–736

    Article  Google Scholar 

  • Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 283:1911–1920

    Article  CAS  PubMed  Google Scholar 

  • Harinasut P, Tsutsui K, Takabe T, Nomura M, Takabe T, Kishitani S (1996) Exogenous glycinebetaine accumulation and increased salt-tolerance in rice seedlings. Biosci Biotech Biochim 60:366–368

    Article  CAS  Google Scholar 

  • Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329:833–835

    Article  Google Scholar 

  • Heiber T, Steinkamp T, Hinnah S, Schwarz M, Flügge U-I, Weber A, Wagner R (1995) Ion channels in the chloroplast envelope membrane. Biochem 34:15906–15917

    Article  CAS  Google Scholar 

  • Hua BG, Mercier RW, Leng Q, Berkowitz GA (2003) Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiol 132:1353–1361

    CAS  Google Scholar 

  • Hughes FM, Cidlowski JA (1999) Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Reg 39:157–171

    Article  CAS  Google Scholar 

  • Ivashikina N, Hedrich R (2005) K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels. Plant J 41:606–614

    Article  CAS  PubMed  Google Scholar 

  • James RA, Munns R, von Caemmerer S, Trejo C, Miller C, Condon AG (2006) Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl in salt-affected barley and durum wheat. Plant Cell Environ 29:2185–2197

    Article  CAS  PubMed  Google Scholar 

  • Junge W, Jackson B (1982) The development of electrochemical potential gradients across photosynthetic membranes. In: Govindjee RA (ed) Photosynthesis: energy conversion in plants and bacteria. vol I. Academic, New York, pp 589–646

    Google Scholar 

  • Karley AJ, Leigh RA, Sanders D (2000) Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. Plant Physiol 122:835–844

    Article  CAS  PubMed  Google Scholar 

  • Köhler C, Merkle T, Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104

    Article  PubMed  Google Scholar 

  • Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novere N, Nam HG, Spalding EP, Tester M, Turano FJ, Chiu J, Coruzzi G (2001) The identity of plant glutamate receptors. Science 292:1486–1487

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, Coruzzi G (1998) Glutamate-receptor genes in plants. Nature 396:125–126

    Article  CAS  PubMed  Google Scholar 

  • Laus MN, Soccio M, Trono D, Cattivelli L, Pastore D (2008) Plant inner membrane anion channel (PIMAC) function in plant mitochondria. Plant Cell Physiol 49:1039–1055

    Article  CAS  PubMed  Google Scholar 

  • Leigh RA, Walker DJ, Fricke W, Tomos AD, Miller AJ (1999) Patterns of potassium compartmentation in plant cells as revealed by microelectrodes and microsampling. In: Oosterhuis DM, Berkowitz GA (eds) Frontiers in Potassium Nutrition: New Perspectives on the Effects of Potasium on Physiology of Plants. The Potash and Phosphate Institute, Norcross, Georgia, pp 63–70

    Google Scholar 

  • Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128:400–410

    Article  CAS  PubMed  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell (Suppl) 14:S389–S400

    Google Scholar 

  • Maathuis FJM (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57:1137–1147

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1994) Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci USA 91:9272–9276

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Sanders D (2001) Sodium uptake in arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Prins HBA (1990) Patch clamp studies on root cell vacuoles of a salt- tolerant and a salt-sensitive Plantago species. Plant Physiol 92:23–28

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja S (2005) Cold, salinity and drought stresses: An overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) The mineral nutrition of higher plants. Academic press, London

    Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  Google Scholar 

  • Mi F, Berkowitz GA, Peters JS (1994) Characterization of a chloroplast inner envelope K+ channel. Plant Physiol 105:955–964

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Bañon S, Olmos E, Sánchez-Blanco MJ (2007) Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Sci 172:473–480

    Article  CAS  Google Scholar 

  • Neuhaus HE, Wagner R (2000) Solute pores, ion channels, and metabolite transporters in the outer and inner envelope membranes of higher plant plastids. Biochim Biophys Acta 1465:307–323

    Article  CAS  PubMed  Google Scholar 

  • Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice Shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiology 144:1978–1985

    Article  CAS  PubMed  Google Scholar 

  • Pastore D, Stoppelli MC, Di Fonzo N, Passarella S (1999) The existence of the K+ channel in plant mitochondria. J Biol Chem 274:26683–26690

    Article  CAS  PubMed  Google Scholar 

  • Pastore D, Trono D, Laus MN, Di Fonzo N, Flagella Z (2007) Possible plant mitochondria involvement in cell adaptation to drought stress: A case study: durum wheat mitochondria J Exp Bot 58:195–210

    CAS  Google Scholar 

  • Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux M, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    Article  CAS  PubMed  Google Scholar 

  • Pérez V, Wherrett T, Shabala S, Muñiz J, Dobrovinskaya O, Pottosin I (2008) Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ. J Exp Bot 59:3845–3855

    Article  PubMed  CAS  Google Scholar 

  • Petrussa E, Bertolini A, Krajnakova J, Casolo V, Macri F, Vianello A (2008) Isolation of mitochondria from embryogenic cultures of Picea abies (L.) Karst. and Abies cephalonic. Plant Cell Rep 27:137–146

    Article  CAS  PubMed  Google Scholar 

  • Pier PA, Berkowitz GA (1987) Modulation of water-stress effects on photosynthesis by altered leaf K+. Plant Physiol 85:655–661

    Article  CAS  PubMed  Google Scholar 

  • Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787

    Article  CAS  PubMed  Google Scholar 

  • Pottosin I, Wherrett T, Shabala S (2009) SV channels dominate the vacuolar Ca2+ release during intracellular signaling. FEBS Lett 583:921–926

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Dobrovinskaya OR, Muniz J (2001) Conduction of monovalent and divalent cations in the slow vacuolar channel. J Membr Biol 181:55–65

    CAS  PubMed  Google Scholar 

  • Pottosin II, Martinez-Estevez M, Dobrovinskaya OR, Muñiz J (2003) Potassium-selective channel in the red beet vacuolar membrane. J Exp Bot 54:663–667

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Martínez-Estévez M, Dobrovinskaya OR, Muñiz J (2005a) Regulation of the slow vacuolar channel by luminal potassium: role of surface charge. J Membr Biol 205:103–111

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Martinez-Estevez M, Dobrovinskaya OR, Muñiz J, Schönknecht G (2004) Mechanisms of luminal Ca2+ and Mg2+ action on the vacuolar slowly activating channels. Planta 219:1057–1070

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Muñiz J (2002) Higher plant vacuolar ionic transport in the cellular context. Acta Bot Mex 60:37–77

    Google Scholar 

  • Pottosin II, Muñiz J, Shabala S (2005b) Fast-activating channel controls cation fluxes across the native chloroplast envelope. J Membr Biol 204:145–156

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Schönknecht G (2007) Vacuolar calcium channels. J Exp Bot 58:1559–1569

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Tikhonova LI, Hedrich R, Schönknecht G (1997) Slowly activating vacuolar ion channel can not mediate Ca2+-induced Ca2+ release. Plant J 12:1387–1398

    Article  CAS  Google Scholar 

  • Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+/H+ antiporter during salinity stress. Plant Physiol 136:2548–2555

    Article  CAS  PubMed  Google Scholar 

  • Ranf S, Wünnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53:287–299

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25–77

    Article  CAS  Google Scholar 

  • Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002) AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K+ influx. Proc Natl Acad Sci USA 99:4079–4084

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Robinson SP, Downton WJS, Millhouse JA (1983) Photosynthesis and ion content of leaves and isolated chloroplasts of salt stressed spinach. Plant Physiol 73:238–242

    Article  CAS  PubMed  Google Scholar 

  • Ruy F, Vercesi AE, Andrade PB, Bianconi ML, Chaimovich H, Kowaltowski AJ (2004) A highly active ATP-insensitive K+ import pathway in plant mitochondria. J Bioenerg Biomembr 36:195–202

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  CAS  PubMed  Google Scholar 

  • Scholz-Starke J, Gambale F, Carpaneto A (2005) Modulation of plant ion channels by oxidizing and reducing agents. Arc Biochem Biophys 434:43–50

    Article  CAS  Google Scholar 

  • Shabala L, Cuin TA, Newman IA, Shabala S (2005a) Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825–837

    Article  CAS  Google Scholar 

  • Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot 92:627–634

    Article  CAS  PubMed  Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60:709–711

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plantar 133:651–669

    Article  CAS  Google Scholar 

  • Shabala S, Cuin TA, Pottosin I (2007a) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Let 581:1993–1999

    Article  CAS  Google Scholar 

  • Shabala S, Cuin TA, Prismall L, Nemchinov LG (2007b) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227:189–197

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129:290–299

    CAS  Google Scholar 

  • Shabala S, Shabala L, Van Volkenburgh E (2003) Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol 30:507–514

    Article  CAS  Google Scholar 

  • Shabala S, Shabala L, Van Volkenburgh E, Newman I (2005b) Effect of divalent cations on ion fluxes and leaf photochemistry in salinised barley leaves. J Exp Bot 56:1369–1378

    Article  CAS  PubMed  Google Scholar 

  • Shingles R, McCarty RE (1994) Direct measurement of ATP-dependent proton concentration changes and characterization of a K+-stimulated ATPase in pea chloroplast inner envelope vesicles. Plant Physiol 106:731–737

    CAS  PubMed  Google Scholar 

  • Smethurst CF, Rix K, Garnett T, Auricht G, Bayart A, Lane P, Wilson SJ, Shabala S (2008) Multiple traits associated with salt tolerance in lucerne: revealing the underlying cellular mechanisms. Funct Plant Biol 35:640–650

    Article  CAS  Google Scholar 

  • Song C-P, Yan G, Qiu Q, Lambert G, Galbraith DW, Jagendorf A, Zhu J-K (2004) A probable Na+ (K+) / H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10211–10216

    Article  CAS  PubMed  Google Scholar 

  • Su H, Golldack D, Katsuhara M, Zhao CS, Bohnert HJ (2001) Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol 125:604–614

    Article  CAS  PubMed  Google Scholar 

  • Szyroki A, Ivashikina N, Dietrich P, Roelfsema MRG, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci USA 98:2917–2921

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  Google Scholar 

  • Thaler M, Simonis W, Schönknecht G (1991) Light-dependent changes of the cytoplasmic H+ and Cl activity in the green alga Eremosphaera viridis. Plant Physiol 99:103–110

    Article  Google Scholar 

  • Tikhonova LI, Pottosin II, Dietz K-J, Schönknecht G (1997) Fast-activating cation channel in barley mesophyll vacuoles. Inhibition by calcium. Plant J 11:1059–1070

    CAS  Google Scholar 

  • Trono D, Flagella Z, Laus MN, Di Fonzo N, Pastore D (2004) The uncoupling protein and the potassium channel are activated by hyperosmotic stress in mitochondria from durum wheat seedlings. Plant Cell Environ 27:437–448

    Article  CAS  Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  CAS  PubMed  Google Scholar 

  • van den Wijngaard PWJ, Sinnige MP, Roobeek I, Reumer A, Schoonheim PJ, Mol JNM, Wang M, De Boer AH (2005) Abscisic acid and 14–3–3 proteins control K+ channel activity in barley embryonic root. Plant J 41:43–55

    Article  PubMed  CAS  Google Scholar 

  • Véry A-A, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175

    Article  PubMed  Google Scholar 

  • Véry A-A, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603

    Article  PubMed  Google Scholar 

  • Vianello A, Zancani M, Peresson C, Petrussa E, Casolo V, Krajnakova J, Patui S, Braidot E, Macri F (2007) Plant mitochondrial pathway leading to programmed cell death. Physiol Plantar 129:242–252

    Article  CAS  Google Scholar 

  • Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K (2006) Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J 48:296–306

    Article  CAS  PubMed  Google Scholar 

  • Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342–353

    Article  CAS  PubMed  Google Scholar 

  • Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2004) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Environ 27:1–14

    Article  CAS  Google Scholar 

  • Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93:10510–10514

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Davenport RJ, Volkov V, Amtmann A (2006) Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J Exp Bot 57:1161–1170

    Article  CAS  PubMed  Google Scholar 

  • Wang X-C, Berkowitz GA, Peters JS (1993) K+-conducting ion channel of the chloroplast inner envelope: Functional reconstitution into liposomes. Proc Natl Acad Sci USA 90:4981–4985

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Schroeder JI (1994) Calcium-activated K+ channels and calcium-induced calcium-release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669–683

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Berkowitz GA (1992a) Stromal pH and photosynthesis are affected by electroneutral K+ and H+ exchange through chloroplast envelope ion channels. Plant Physiol 98:666–672

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Berkowitz GA (1992b) K+-stimulation of ATPase activity associated with the chloroplast inner envelope. Plant Physiol 99:553–560

    Article  CAS  PubMed  Google Scholar 

  • Xu WF, Shi WM (2006) Expression profiling of the 14–3–3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: Analysis by real-time RT-PCR. Ann Bot 98:965–974

    Article  CAS  PubMed  Google Scholar 

  • Yuan QP, Ouyang S, Liu J, Suh B, Cheung F, Sultana R, Lee D, Quackenbush J, Buell CR (2003) The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists. Nucleic Acids Res 31:229–233

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Barkla BJ, Marshall J, Pittman JK, Hirschi KD (2008) The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta 227:659–669

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the ARC and GRDC grants to S. Shabala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Shabala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shabala, S., Pottosin, I.I. (2010). Potassium and Potassium-Permeable Channels in Plant Salt Tolerance. In: Demidchik, V., Maathuis, F. (eds) Ion Channels and Plant Stress Responses. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10494-7_5

Download citation

Publish with us

Policies and ethics