Skip to main content

Vacuolar Ion Channels: Roles as Signalling Mechanisms and in Plant Nutrition

  • Chapter
  • First Online:

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Vacuoles play various roles in many physiologically relevant processes in plants. Some of the more prominent are turgor provision, the storage of minerals and nutrients and cellular signalling. To fulfil these functions a complement of membrane transporters is present at the tonoplast. Prolific patch clamp studies have shown that amongst these, both selective and non selective cation channels (NSCCs) control key vacuolar functions: The non-selective SV channel is Ca2+ permeable and has been proposed to have signalling roles during germination, stomatal opening and in response to pathogens. The K+ selective VK channel impacts on K+ nutrition and stomatal closure. Ligand-gated channels form possible pathways for vacuolar Ca2+ release whereas the FV channel may be important in overall K+ homeostasis. This chapter will summarise and review the main functions of vacuolar ion channels with particular emphasis on their roles in abiotic and biotic stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

cADPR:

Cyclic ADP-ribose

FV:

Fast vacuolar channel

IP3 :

Myo-inositol 1,4,5-triphosphate

LV:

Lytic vacuole

NSCC:

Non selective cation channel

PMF:

Proton motive force

PSV:

Protein storage vacuole

SV:

Slow vacuolar channel

VK:

Vacuolar K+ channel

TMD:

Transmembrane domain

References

  • Alexandre J, Lassalles JP, Kado RT (1990) Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-triphosphate. Nature 343:567–570

    Article  CAS  Google Scholar 

  • Ali W, Isayenkov SV, Zhao FJ, Maathuis FJM (2009) Arsenite transport in plants. Cell Mol Life Sci 66:2329–2340

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Muir SR, Sanders D (1995) Release of Ca2+ from individual plant vacuoles by both Insp3 and cyclic ADP-ribose. Science 268:735–737

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Sanders D (1997) Vacuolar ion channels of higher plants. Adv Bot Res 25:217–252

    Article  CAS  Google Scholar 

  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, TallmanG, Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–2342

    Article  CAS  PubMed  Google Scholar 

  • Barkla BJ, Pantoja O (1996) Physiology of ion transport across the tonoplast of higher plants. Annu Rev Plant Physiol 47:159–184

    Article  CAS  Google Scholar 

  • Bethke PC, Jones RL (1997) Reversible protein phosphorylation regulates the activity of the slow-vacuolar ion channel. Plant J 11:1227–1235

    Article  CAS  Google Scholar 

  • Bethke PC, Swanson SJ, Hillmer S, Jones RL (1998) From storage compartment to lytic organelle: The metamorphosis of the aleurone protein storage vacuole. Ann Bot 82:399–412

    Article  CAS  Google Scholar 

  • Bruggemann LI, Pottosin II, Schonknecht G (1999) Selectivity of the fast activating vacuolar cation channel. J Exp Bot 50:873–876

    Article  CAS  Google Scholar 

  • Burnette RN, Gunesekera BM, Gillaspy GE (2003) An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. Plant Physiol 132:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942

    Article  PubMed  Google Scholar 

  • Demuro A, Parker I (2006) Imaging single-channel calcium microdomains. Cell Calcium 40:413–422

    Article  CAS  PubMed  Google Scholar 

  • Dunkel M, Latz A, Schumacher K, Wueller T, Becker D, Hedrich R (2008) Targeting of vacuolar membrane localized members of the TPK channel family. Mol Plant 6:938–949

    Article  Google Scholar 

  • Furuichi T, Cunningham KW, Muto S (2001) A putative two pore channel AtTPC1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol 42:900–905

    Article  CAS  PubMed  Google Scholar 

  • Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104:10726–10731

    Article  CAS  PubMed  Google Scholar 

  • Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 283:1911–1920

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Kuromori T, Hirayama T, Shinozaki K, Leigh RA (2004) Quantitative trait loci analysis of nitrate storage in Arabidopsis leading to an investigation of the contribution of the anion channel gene, AtCLC-c, to variation in nitrate levels. J Exp Bot 405:2005–2014

    Article  Google Scholar 

  • Hedrich R, Barbier-Brygoo H, Felle HH, Fluegge UI, Luettge U, Maathuis FJM, Marx S, Prins HBA, Raschke K, Schnabl H, Schroeder JI, Struve I, Taiz L, Ziegler P (1988) General mechanisms for solute transport across the tonoplast of plant vacuoles: a patch clamp survey of ion channels and proton pumps. Bot Act 101:7–13

    CAS  Google Scholar 

  • Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329:833–835

    Article  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613

    Article  CAS  PubMed  Google Scholar 

  • Kadota Y, Furuichi T, Ogasawara Y, Goh T, Higashi K, Muto S, Kuchitsu K (2004) Identification of putative voltage-dependent Ca2+-permeable channels involved in cryptogein-induced Ca2+ transients and defense responses in tobacco BY-2 cells. Biochem Biophys Res Comm 317:823–830

    Article  CAS  PubMed  Google Scholar 

  • Kovermann P, Meyer S, Hortensteiner S, Picco C, Scholz-Starke J, Ravera S, Lee Y, Martinoia E (2007) The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant J 52:1169–1180

    Article  CAS  PubMed  Google Scholar 

  • Kurusu T, Sakurai Y, Miyao A, Hirochika H, Kuchitsu K (2004) Identification of a putative voltage-gated Ca2+-permeable channel (OsTPC1) involved in Ca2+ influx and regulation of growth and development in rice. Plant Cell Physiol 45:693–702

    Article  CAS  PubMed  Google Scholar 

  • Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K (2005) Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J 42:798–809

    Article  CAS  PubMed  Google Scholar 

  • Latz A, Becker D, Hekman M, Mueller T, Beyhl D, Marten I, Eing C, Fischer A, Dunkel M, Bertl A, Rapp UR, Hedrich R (2007) TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins. Plant J 52:449–459

    Article  CAS  PubMed  Google Scholar 

  • Leigh RA, Storey R (1993) Intercellular compartmentation of ions in barley leaves in relation to potassium nutrition and salinity. J Exp Bot 44:755–762

    Article  CAS  Google Scholar 

  • Leigh RA, Sanders D (1997) The plant vacuole. Adv Bot Res 25:1–461

    Article  Google Scholar 

  • Maathuis FJM, Prins HBA (1990) Patch clamp studies on root cell vacuoles of a salt tolerant and a salt sensitive Plantago species. Plant Physiol 92:23–28

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Sanders D (1993) Energization of potassium uptake in Arabidopsis thaliana. Planta 191:302–307

    Article  CAS  Google Scholar 

  • Mandi M, Bak J (2008) Nicotinic acid adenine dinucleotide phosphate (NAADP) and Ca2+ mobilization. J Receptors Signal Transduction 28:163–184

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition in higher plants. Mineral nutrition of higher plants. Academic, London 889 pp

    Google Scholar 

  • Martinoia E (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  CAS  PubMed  Google Scholar 

  • Otegui MS, Capp R, Staehelin LA (2002) Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum. Plant Cell 14:1311–1327

    Article  CAS  PubMed  Google Scholar 

  • Pantoja O, Dainty J, Blumwald E (1989) Ion channels in vacuoles from halophytes and glycophytes. FEBS Lett 255:92–96

    Article  CAS  Google Scholar 

  • Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux M, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Martinez-Estevez M (2003) Regulation of the fast vacuolar channel by cytosolic and vacuolar potassium. Biophys J 84:977–986

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Schoenknecht G (2007) Vacuolar calcium channels. J Exp Bot 58:1559–1569

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Wherrett T, Shabala S (2009) SV channels dominate the vacuolar Ca2+ release during intracellular signalling. FEBS Lett 583:921–926

    Article  CAS  PubMed  Google Scholar 

  • Ranf S, Wunnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53:287–299

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    Google Scholar 

  • Scholz-Starke J, De Angeli A, Ferraretto C, Paluzzi S, Gambale F, Carpaneto A (2004) Redox-dependent modulation of the carrot SV channel by cytosolic pH. FEBS Lett 576:449–454

    Article  CAS  PubMed  Google Scholar 

  • Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishimura I, Shimazaki K, Maeshima M, Yokota A, Tomizawa K, Mimura T (2004) Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol 45:672–683

    Article  CAS  PubMed  Google Scholar 

  • Tikhonova LI, Pottosin II, Dietz KJ, Schonknecht G (1997) Fast-activating cation channel in barley mesophyll vacuoles. Inhibition by calcium. Plant J 11:1059–1070

    Article  CAS  Google Scholar 

  • van den Wijngaard PWJ, Bunney TD, Roobeek I, Schonknecht G, De Boer AH (2001) Slow vacuolar channels from barley mesophyll cells are regulated by 14-3-3 proteins. FEBS Lett 488:100–104

    Article  PubMed  Google Scholar 

  • Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K (2006) Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J 48:296–306

    Article  CAS  PubMed  Google Scholar 

  • Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93:10510–10514

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Schroeder JI (1994) Calcium activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669–683

    Article  CAS  PubMed  Google Scholar 

  • Weernink PAO, Han L, Jakobs KH, Schmidt M (2007) Dynamic phospholipid signaling by G protein-coupled receptors. Biochim Biophys Acta 1768:888–900

    Article  Google Scholar 

  • Whiteman SA, Serazetdinova L, Jones AME, Sanders D, Rathjen J, Peck SC, Maathuis FJM (2008) Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics 8:3536–3547

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans J. M. Maathuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maathuis, F.J.M. (2010). Vacuolar Ion Channels: Roles as Signalling Mechanisms and in Plant Nutrition. In: Demidchik, V., Maathuis, F. (eds) Ion Channels and Plant Stress Responses. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10494-7_10

Download citation

Publish with us

Policies and ethics