Advertisement

Plasma Physics pp 323-350 | Cite as

Plasma Generation

Chapter

Abstract

Lightnings and technical plasmas are generated by an electric breakdown in a gas. The ignition process leads to a subsequent current flow that generates an electrical discharge. Depending on the power source that feeds the plasma, we distinguish direct current (dc), low-frequency alternating current (ac), and radio-frequency (rf) discharges. This chapter gives a brief introduction into the most common types of discharges and the associated plasma processes with emphasis on the how-questions rather than giving answers to all why-questions.

Keywords

Glow Discharge Plasma Generation Positive Column Virtual Cathode Bulk Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 68.
    Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991)Google Scholar
  2. 351.
    A. von Engel, Ionized Gases (Clarendon, Oxford, 1965)Google Scholar
  3. 352.
    W.B. Nottingham, in Handbuch der Physik, vol. XXI, ed. by S. Flügge (Springer, Berlin, 1956)Google Scholar
  4. 353.
    J.W. McGowan, P.K. John, Gaseous Electronics (North-Holland, Amsterdam, 1974), pp. 9–16Google Scholar
  5. 354.
    L. Malter, E.O. Johnson, W.M. Webster, RCA Rev. XII, 415 (1951)Google Scholar
  6. 355.
    R. Timm, A. Piel, Contrib. Plasma Phys. 32, 599 (1992)CrossRefADSGoogle Scholar
  7. 356.
    V.A. Godyak, N. Sternberg, Phys. Rev. . 42, 2299 (1990)CrossRefADSGoogle Scholar
  8. 357.
    P. Belenguer, J.P. Boeuf, Phys. Rev. . 41, 4447 (1990)CrossRefADSGoogle Scholar
  9. 358.
    M.A. Liebermann, V.A. Godyak, IEEE Trans. Plasma Sci. 26, 955 (1998)CrossRefADSGoogle Scholar
  10. 359.
    V.A. Godyak, A.S. Khanneh, IEEE Trans. Plasma Sci. 41, 112 (1986)CrossRefADSGoogle Scholar
  11. 360.
    R. Flohr, A. Piel, Contrib. Plasma Phys. 33, 153 (1993)CrossRefADSGoogle Scholar
  12. 361.
    V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Plasma Sources Sci. Technol. 1, 36 (1992)CrossRefADSGoogle Scholar
  13. 362.
    A. Melzer, R. Flohr, A. Piel, Plasma Sources Sci. Technol. 4, 424 (1995)CrossRefADSGoogle Scholar
  14. 363.
    K. Köhler, J.W. Coburn, D.E. Horne, E. Kay, J. Appl. Phys. 57, 59 (1985)CrossRefADSGoogle Scholar
  15. 364.
    J.W. Coburn, E. Kay, J. Appl. Phys. 43, 4965 (1972)CrossRefADSGoogle Scholar
  16. 365.
    J.W. Coburn, H.F. Winters, J. Appl. Phys. 50, 3189 (1979)CrossRefADSGoogle Scholar
  17. 366.
    J. Hopwood, Plasma Sources Sci. Technol. 1, 109 (1992)CrossRefADSGoogle Scholar
  18. 367.
    J.H. Keller, J.C. Forster, M.S. Barnes, J. Vac. Sci. Technol. . 11, 2487 (1993)ADSGoogle Scholar
  19. 368.
    J.H. Keller, Plasma Sources Sci. Technol. 5, 166 (1996)CrossRefADSGoogle Scholar
  20. 369.
    V.I. Kolobov, D.J. Economou, Plasma Sources Sci. Technol. 6, R1 (1997)Google Scholar
  21. 370.
    M.A. Liebermann, A.J. Lichtenberg, Principles of Plasma Discharges and Material Processing (Wiley, New York, 1994)Google Scholar
  22. 371.
    B. Chapman, Glow Discharge Processes (Wiley, New York, 1980)Google Scholar
  23. 372.
    J.R. Roth, Industrial Plasma Engineering, Vol. I: Principles (IOP, Bristol, 1995)CrossRefGoogle Scholar
  24. 373.
    R. Hippler, H. Kersten, M. Schmidt, K.H. Schoenbach, Low Temperature Plasmas, 2nd edn. (Wiley-VCH, Weinheim, 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Christian-Albrechts-Universität Kiel, Institut für Experimentelle und Angewandte PhysikKielGermany

Personalised recommendations