Skip to main content

Context Preserving Focal Probes for Exploration of Volumetric Medical Datasets

  • Conference paper
Modelling the Physiological Human (3DPH 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5903))

Included in the following conference series:

Abstract

During real-time medical data exploration using volume rendering, it is often difficult to enhance a particular region of interest without losing context information. In this paper, we present a new illustrative technique for focusing on a user-driven region of interest while preserving context information. Our focal probes define a region of interest using a distance function which controls the opacity of the voxels within the probe, exploit silhouette enhancement and use non-photorealistic shading techniques to improve shape depiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C., Weiskopf, D.: Real-time Volume Graphics. AK-Peters (2006)

    Google Scholar 

  2. Gobbetti, E., Marton, F., Iglesias-Guitián, J.A.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. The Visual Computer 24(7–9), 797–806 (2008)

    Article  Google Scholar 

  3. Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D), pp. 15–22 (2009)

    Google Scholar 

  4. Hendee, W.R., Wells, P.N.T.: The perception of visual information. Springer, New York (1997)

    MATH  Google Scholar 

  5. Ware, C.: Information Visualization:Perception for Design, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2004)

    Google Scholar 

  6. Smolnik, S., Nastansky, L., Knieps, T.: Mental representations and visualization processes in organizational memories. In: Proceedings of the Seventh International Conference on Information Visualization (IV 2003), pp. 568–575. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  7. Thomas, R.J., Strothotte, T.: Motion enhanced visualization in support of information fusion. In: Proceedings of International Conference on Imaging Science, Systems, and Technology(CISST 2001), pp. 492–497. CSREA Press, Las Vegas (2001)

    Google Scholar 

  8. Ebert, D., Rheingans, P.: Volume illustration: non-photorealistic rendering of volume models. In: Proceedings of IEEE Visualization, pp. 195–202 (2000)

    Google Scholar 

  9. Treavett, S.M.F., Chen, M.: Pen-and-ink rendering in volume visualization. In: Visualization 2000: Proceedings of the 11th IEEE Visualization 2000 Conference (VIS 2000), Washington, DC, USA. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  10. Lu, A., Morris, C.J., Ebert, D.S.: Non-photorealistic volume rendering using stippling techniques. In: Proceedings of IEEE Visualization, pp. 211–218 (2002)

    Google Scholar 

  11. Nagy, Z., Schneider, J., Westermann, R.: Interactive volume illustration. In: Proceedings of Vision, Modeling, and Visualization, pp. 497–504 (2002)

    Google Scholar 

  12. Dong, F., Clapworthy, G.J., Lin, H., Krokos, M.A.: Nonphotorealistic rendering of medical volume data. IEEE Comput. Graph. Appl. 23(4), 44–52 (2003)

    Article  Google Scholar 

  13. Hauser, H., Mroz, L., Bischiand, G.I., Gröller, M.E.: Two-level volume rendering. IEEE Transactions on Visualization and Computer Graphics 7(3), 242–252 (2001)

    Article  Google Scholar 

  14. Cohen, M., Brodlie, K.: Focus and context for volume visualization. In: TPCG 2004: Proceedings of the Theory and Practice of Computer Graphics 2004 (TPCG 2004), Washington, DC, USA, pp. 32–39. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  15. Viola, I., Kanitsar, A., Gröller, M.E.: Importance-driven volume rendering. In: Proceedings of IEEE Visualization 2004, pp. 139–145 (2004)

    Google Scholar 

  16. Ropinski, T., Steinicke, F., Hinrichs, K.H.: Tentative results in focus-based medical volume visualization. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2005. LNCS, vol. 3638, pp. 218–221. Springer, Heidelberg (2005)

    Google Scholar 

  17. Bruckner, S., Gröller, M.E.: Volumeshop: An interactive system for direct volume illustration. In: IEEE Visualization, pp. 671–678 (2005)

    Google Scholar 

  18. Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving exploration of volume data. IEEE Trans. Vis. Comput. Graph 12(6), 1559–1569 (2006)

    Article  Google Scholar 

  19. Krüger, J., Schneider, J., Westermann, R.: Clearview:an interactive context preserving hotspot visualization technique, vol. 12, pp. 941–948 (2006)

    Google Scholar 

  20. Zhou, J., Döring, A., Tönnies, K.D.: Distance based enhancement for focal region based volume rendering. In: Proceedings of Bildverarbeitung für die Medizin 2004, pp. 199–203 (2004)

    Google Scholar 

  21. Tappenbeck, A., Preim, B., Dicken, V.: Distance-based transfer function design: Specification methods and applications. In: Proceedings of SimVis 2006 (2006)

    Google Scholar 

  22. Csbfalvi, B., Mroz, L., Hauser, H., König, A., Gröller, M.E.: Fast visualization of object contours by non-photorealistic volume rendering. Computer Graphics Forum 20(3), 452–460 (2001)

    Article  Google Scholar 

  23. Kindlmann, G., Whitaker, R., Tasdizen, T., Möller, T.: Curvature-based transfer functions for direct volume rendering: Methods and applications. In: Proceedings of IEEE Visualization, October 2003, pp. 513–520 (2003)

    Google Scholar 

  24. Rusinkiewicz, S., Burns, M., DeCarlo, D.: Exaggerated shading for depicting shape and detail. In: ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 25 (2006)

    Google Scholar 

  25. Schlick, C.: A fast alternative to phong’s specular model. In: Graphics Gems IV, San Diego, CA, USA, pp. 385–387. Academic Press Professional, Inc., London (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, Y., Iglesias Guitián, J.A., Gobbetti, E., Marton, F. (2009). Context Preserving Focal Probes for Exploration of Volumetric Medical Datasets. In: Magnenat-Thalmann, N. (eds) Modelling the Physiological Human. 3DPH 2009. Lecture Notes in Computer Science, vol 5903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10470-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10470-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10468-8

  • Online ISBN: 978-3-642-10470-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics