Skip to main content

Strong Electronic Correlations: Dynamical Mean-Field Theory and Beyond

  • Chapter
  • First Online:
Modern Theories of Many-Particle Systems in Condensed Matter Physics

Abstract

This chapter aims at a pedagogical introduction to theoretical approaches of strongly correlated materials based on dynamical mean-field theory (DMFT) and its extensions. The goal of this theoretical construction is to retain the many-body aspects of local atomic physics within the extended solid. After introducing the main concept at the level of the Hubbard model, we briefly review the theoretical insights into the Mott metal-insulator transition that DMFT provides. We then describe realistic extensions of this approach which combine the accuracy of first-principle Density-Functional Theory with the treatment of local many-body effects within DMFT. We further provide an elementary discussion of the continuous-time Quantum Monte Carlo schemes for the numerical solution of the DMFT effective quantum impurity problem. Finally, the effects of short-range non-local correlations within cluster extensions of the DMFT scheme, as well as long-range fluctuations within the fully renormalized dual-fermion perturbation scheme are discussed extensively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the notation of Sect. 4.2 N should then be replaced the number of clusters \(N/N_{\rm{c}}\) and the momentum \({{\mathbf{k}}}\) should be identified with the superlattice momentum \(\tilde{\user2{k}}.\)

References

  1. Prange, R.E., Girvin, S.M.: The Quantum Hall Effect. Springer, New York (1997)

    Google Scholar 

  2. Stewart, G.R.: Heavy-fermion systems. Rev. Mod. Phys. 56, 755 (1984)

    Article  ADS  Google Scholar 

  3. Löhneysen, H.V., Rosch, A., Vojta, M., Wölfle, P.: Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015 (2007)

    Article  ADS  Google Scholar 

  4. Hewson, A.C.: The Kondo Problem to Heavy Fermions. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  5. Anderson, P.W.: The Theory of Superconductivity in High- \(T_c \) Cuprates. Princeton University Press, Princeton (1997)

    Google Scholar 

  6. Scalapino, D.J.: The case for \(d_{x^2-y^2}\) pairing in the cuprate superconductors. Phys. Rep 250, 329 (1995)

    Google Scholar 

  7. Biermann, S., Poteryaev, A., Lichtenstein, A.I., Georges, A.: Dynamical singlets and correlation-assisted Peierls transition in \({\hbox{VO}}_2\). Phys. Rev. Lett. 94, 026404 (2005)

    Article  ADS  Google Scholar 

  8. Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-Based Layered Superconductor La \({\rm O}_{1-x} {\hbox{F}}_x\)FeAs (x =0.05-0.12) with \(T_{c} = 26 {\hbox{K}}\). J. Am. Chem. Soc. 130, 3296 (2008)

    Google Scholar 

  9. Imada, M., Fujimori, A., Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  10. Anisimov, V.I., Zaanen, J., Andersen, O.K.: Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  11. Aryasetiawan, F., Gunnarsson, O.: The GW method. Rep. Prog. Phys. 61, 237 (1998)

    Article  ADS  Google Scholar 

  12. Kotliar, G., Savrasov, S.Y., Haule, K., Oudovenko, V.S., Parcollet, O., Marianetti, C.A.: Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  13. Kotliar, G., Vollhardt, D.: Strongly correlated materials: insights from dynamical mean-field theory. Phys. Today 57, 53 (2004)

    Google Scholar 

  14. Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J.: Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  15. Mott, N.F.: Metal-Insulator Transitions. Taylor and Francis, London (1974)

    Google Scholar 

  16. Anisimov, V.I., Poteryaev, A.I., Korotin, M.A., Anokhin, A.O., Kotliar, G.: First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys.: Condens. Matter 9, 7359 (1997)

    Article  ADS  Google Scholar 

  17. Lichtenstein, A.I., Katsnelson, M.I.: Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Phys. Rev. B 57, 6884 (1998)

    Article  ADS  Google Scholar 

  18. Lichtenstein, A.I., Katsnelson, M.I., Kotliar, G.: Finite-temperature magnetism of transition metals: an ab initio dynamical mean-field theory. Phys. Rev. Lett. 87, 067205 (2001)

    Article  ADS  Google Scholar 

  19. Lichtenstein, A.I., Katsnelson, M.I.: Antiferromagnetism and d-wave superconductivity in cuprates: a cluster dynamical mean-field theory. Phys. Rev. B 62, R9283 (2000)

    Article  ADS  Google Scholar 

  20. Kotliar, G., Savrasov, S.Y., Pálsson, G., Biroli, G.: Cellular dynamical mean field approach to strongly correlated systems. Phys. Rev. Lett. 87, 186401 (2001)

    Article  ADS  Google Scholar 

  21. Potthoff, M., Aichhorn, M., Dahnken, C.: Variational cluster approach to correlated electron systems in low dimensions. Phys. Rev. Lett. 91, 206402 (2003)

    Article  ADS  Google Scholar 

  22. Maier, T., Jarrell, M., Pruschke, T., Hettler, M.H.: Quantum cluster theories. Rev. Mod. Phys. 77, 1027 (2005)

    Article  ADS  Google Scholar 

  23. Irkhin, V.Y., Katanin, A.A., Katsnelson, M.I.: Robustness of the Van Hove scenario for high- \(T_{c} \) superconductors. Phys. Rev. Lett. 89, 076401 (2002)

    Google Scholar 

  24. Slezak, C., Jarrell, M., Maier, T., Deisz, J.: Multi-scale extensions to quantum cluster methods for strongly correlated electron systems. J. Phys.: Condens. Matter 21, 435604 (2009)

    Article  ADS  Google Scholar 

  25. Toschi, A., Katanin, A.A., Held, K.: Dynamical vertex approximation: a step beyond dynamical mean-field theory. Phys. Rev. B 75, 045118 (2007)

    Article  ADS  Google Scholar 

  26. Kusunose, H.: Influence of spatial correlations in strongly correlated electron systems: extension to dynamical mean field approximation. J. Phys. Soc. Jpn 75, 054713 (2006)

    Google Scholar 

  27. Georges, A., Kotliar, G.: Hubbard model in infinite dimensions. Phys. Rev. B 45, 6479 (1992)

    Article  ADS  Google Scholar 

  28. Metzner, W., Vollhardt, D.: Correlated lattice fermions in \(d=\infty \) dimensions. Phys. Rev. Lett. 62, 324 (1989)

    Article  ADS  Google Scholar 

  29. Georges, A.: In: Avella A., and Mancini F. (eds.) Lectures on the Physics of Highly Correlated Electron Systems VIII, American Institute of Physics (2004) (cond-mat/0403123)

    Google Scholar 

  30. Bulla, R., Costi, T.A., Pruschke, T.: Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  31. Kotliar, G.: Driving the electron over the edge. Science 302, 67 (2003)

    Google Scholar 

  32. Lechermann, F., Georges, A., Poteryaev, A., Biermann, S., Posternak, M., Yamasaki, A., Andersen, O.K.: Dynamical mean-field theory using Wannier functions: a flexible route to electronic structure calculations of strongly correlated materials. Phys. Rev. B 74, 125120 (2006)

    Article  ADS  Google Scholar 

  33. Amadon, B., Lechermann, F., Georges, A., Jollet, F., Wehling, T.O., Lichtenstein, A.I.: Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals. Phys. Rev. B 77, 205112 (2008)

    Article  ADS  Google Scholar 

  34. Miyake, T., Aryasetiawan, F.: Screened Coulomb interaction in the maximally localized Wannier basis. Phys. Rev. B 77, 085122 (2008)

    Google Scholar 

  35. Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.I.: First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys.: Condens. Matter 9, 767 (1997)

    Article  ADS  Google Scholar 

  36. Pruschke, T., Bulla, R.: Hund’s coupling and the metal-insulator transition in the two-band Hubbard model. Eur. Phys. J. B 44, 217 (2005)

    Article  ADS  Google Scholar 

  37. Pourovskii, L.V., Delaney, K.T., Vande Walle, C.G., Spaldin, N.A, Georges, A.: Role of atomic multiplets in the electronic structure of rare-earth semiconductors and semimetals. Phys. Rev. Lett. 102, 096401 (2009)

    Article  ADS  Google Scholar 

  38. Mo, S.-K., Denlinger, J.D., Kim, H.-D., Park, J.-H., Allen, J.W., Sekiyama, A., Yamasaki, A., Kadono, K., Suga, S., Saitoh, Y., Muro, T., Metcalf, P., Keller, G., Held, K., Eyert, V., Anisimov, V.I., Vollhardt, D.: Prominent quasiparticle peak in the photoemission spectrum of the metallic phase of \(\text{V}_2\text{O}_3\). Phys. Rev. Lett. 90, 186403 (2003)

    Article  ADS  Google Scholar 

  39. Panaccione, G., Altarelli, M., Fondacaro, A., Georges, A., Huotari, S., Lacovig, P., Lichtenstein, A., Metcalf, P., Monaco, G., Offi, F., Paolasini, L., Poteryaev, A., Tjernberg, O., Sacchi, M.: Coherent peaks and minimal probing depth in photoemission spectroscopy of Mott-Hubbard systems. Phys. Rev. Lett. 97, 116401 (2006)

    Article  ADS  Google Scholar 

  40. Haule, K., Shim, J.H., Kotliar, G.: Correlated electronic structure of \({\hbox{LaO}}_{1-x} \) \({\hbox{F}}_ {x} {\hbox{FeAs}}\). Phys. Rev. Lett. 100, 226402 (2008)

    Google Scholar 

  41. Haule, K., Kotliar, G.: Coherence–incoherence crossover in the normal state of iron oxypnictides and importance of Hund’s rule coupling. New J. Phys. 11, 025021 (2009)

    Article  ADS  Google Scholar 

  42. Anisimov, V.I., Korotin, D.M., Korotin, M.A., Kozhevnikov, A.V., Kunes, J., Shorikov, A.O., Skornyakov, S.L., Streltsov, S.V.: Coulomb repulsion and correlation strength in LaFeAsO from density functional and dynamical mean-field theories. J. Phys.: Condens. Matter 21, 075602 (2009)

    Article  ADS  Google Scholar 

  43. Shorikov A.O., Korotin M.A., Streltsov S.V., Skornyakov S.L., Korotin D.M., Anisimov V.I.: Coulomb correlation effects in LaFeAsO: An LDA + DMFT(QMC) study, JETP 108:121 (2009)

    Google Scholar 

  44. Anisimov, V.I., Korotin, D.M., Streltsov, S.V., Kozhevnikov, A.V., Kuneš, J., Shorikov, A.O., Korotin, M.A.: Coulomb parameter U and correlation strength in LaFeAsO. JETP Lett. 88, 729 (2008)

    Article  ADS  Google Scholar 

  45. Aichhorn, M., Pourovskii, L., Vildosola, V., Ferrero, M., Parcollet, O., Miyake, T., Georges, A., Biermann, S.: Dynamical mean-field theory within an augmented plane-wave framework: assessing electronic correlations in the iron pnictide LaFeAsO. Phys. Rev. B 80, 085101 (2009)

    Article  ADS  Google Scholar 

  46. Nakamura, K., Arita, R., Imada, M.: Ab initio Derivation of Low-Energy Model for Iron-Based Superconductors LaFeAsO and LaFePO. J. Phys. Soc. Jpn. 77, 093711 (2008)

    Article  ADS  Google Scholar 

  47. Miyake, T., Pourovskii, L., Vildosola, V., Biermann, S., Georges, A.: d- and f-orbital correlations in the REFeAsO compounds. J. Phys. Soc. Jpn. 77, (Supp. c) 99 (2008)

    Google Scholar 

  48. Miyake, T., Nakamura, K., Arita, R., Imada, M.: Comparison of ab initio low-energy models for LaFePO, LaFeAsO, \(\text{BaFe}_ 2 \text{As}_ 2\), LiFeAs, FeSe, and FeTe, electron correlation and covalency. J. Phys. Soc. Jpn. 79, 044705 (2010)

    Google Scholar 

  49. Craco, L., Laad, M.S., and Leoni, S.: \(\alpha\)-FeSe as an orbital-selective incoherent metal: An LDA + DMFT study, arXiv:0910.3828, unpublished (2009).

    Google Scholar 

  50. Aichhorn, M., Biermann, S., Miyake, T., Georges, A., Imada, M.: Theoretical evidence for strong correlations and incoherent metallic state in FeSe. Phys. Rev. B 82, 064504 (2010)

    Article  ADS  Google Scholar 

  51. Werner, P., Gull, E., Troyer, M., Millis, A.J.: Spin freezing transition and non-Fermi-liquid self-energy in a three-orbital model. Phys. Rev. Lett. 101, 166405 (2008)

    Google Scholar 

  52. Scalapino, D.J., Sugar, R.L.: Method for performing Monte Carlo calculations for systems with fermions. Phys. Rev. Lett. 46, 519 (1981)

    Google Scholar 

  53. Blankenbecler, R., Scalapino, D.J., Sugar, R.L.: Monte Carlo calculations of coupled boson-fermion systems I. Phys. Rev. D 24, 2278 (1981)

    Google Scholar 

  54. Hirsch, J.E.: Two-dimensional Hubbard model: numerical simulation study. Phys. Rev. B 31, 4403 (1985)

    Article  ADS  Google Scholar 

  55. Hirsch, J.E., Fye, R.M.: Monte Carlo method for magnetic impurities in metals. Phys. Rev. Lett. 56, 2521 (1986)

    Article  ADS  Google Scholar 

  56. Rubtsov, A.N., Savkin, V.V., Lichtenstein, A.I.: Continuous-time quantum Monte Carlo method for fermions. Phys. Rev. B 72, 035122 (2005)

    Article  ADS  Google Scholar 

  57. Rubtsov, A.N., Lichtenstein, A.I.: Continuous-time quantum Monte Carlo method for fermions: beyond auxiliary field framework. JETP Lett. 80, 61 (2004)

    Article  ADS  Google Scholar 

  58. Werner, P., Comanac, A., de’Medici, L., Troyer, M., Millis, A.J.: Continuous-time solver for quantum impurity models. Phys. Rev. Lett. 97, 076405 (2006)

    Article  ADS  Google Scholar 

  59. Werner, P., Millis, A.J.: Hybridization expansion impurity solver: general formulation and application to Kondo lattice and two-orbital models. Phys. Rev. B 74, 155107 (2006)

    Article  ADS  Google Scholar 

  60. Haule, K.: Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys. Rev. B 75, 155113 (2007)

    Article  ADS  Google Scholar 

  61. Gull, E., Millis, A.J., Lichtenstein, A.I., Rubtsov, A.N., Troyer, M., and Werner, P.: Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 83, 349 (2011).

    Google Scholar 

  62. Gull, E., Werner, P., Millis, A., Troyer, M.: Performance analysis of continuous-time solvers for quantum impurity models. Phys. Rev. B 76, 235123 (2007)

    Article  ADS  Google Scholar 

  63. Negele, J.W., Orland, H.: Quantum Many-Particle Systems. Westview Press, Boulder (1998)

    Google Scholar 

  64. Prokof’ev, N.V., Svistunov, B.V., Tupitsyn, I.S.: Exact quantum Monte Carlo process for the statistics of discrete systems. JETP Lett. 64, 911 (1996)

    Article  ADS  Google Scholar 

  65. Yoo, J., Chandrasekharan, S., Kaul, R.K., Ullmo, D., Baranger, H.U.: On the sign problem in the Hirsch & Fye algorithm for impurity problems. J. Phys. A: Math. Gen. 38, 10307 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  66. Gull E., Continuous-Time Quantum Monte Carlo Algorithms for Fermions. Ph.D. thesis, ETH Zurich (2008)

    Google Scholar 

  67. Läuchli, A.M., Werner, P.: Krylov implementation of the hybridization expansion impurity solver and application to 5-orbital models. Phys. Rev. B 80, 235117 (2009)

    Article  ADS  Google Scholar 

  68. Poteryaev, A.I., Lichtenstein, A.I., Kotliar, G.: Nonlocal Coulomb interactions and metal-insulator transition in Ti2O3: a cluster LDA+ DMFT approach. Phys. Rev. Lett. 93, 086401 (2004)

    Article  ADS  Google Scholar 

  69. Saha-Dasgupta, T., Lichtenstein, A., Hoinkis, M., Glawion, S., Sing, M., Claessen, R., Valenti, R.: Cluster dynamical mean-field calculations for TiOCl. New J. Phys. 9, 380 (2007)

    Article  ADS  Google Scholar 

  70. Fuhrmann, A., Okamoto, S., Monien, H., Millis, A.J.: Fictive-impurity approach to dynamical mean-field theory: a strong-coupling investigation. Phys. Rev. B 75, 205118 (2007)

    Article  ADS  Google Scholar 

  71. Okamoto, S., Millis, A.J., Monien, H., Fuhrmann, A.: Fictive impurity models: an alternative formulation of the cluster dynamical mean-field method. Phys. Rev. B 68, 195121 (2003)

    Article  ADS  Google Scholar 

  72. Biroli, G., Kotliar, G.: Cluster methods for strongly correlated electron systems. Phys. Rev. B 65, 155112 (2002)

    Article  ADS  Google Scholar 

  73. Potthoff, M.: Self-energy-functional approach to systems of correlated electrons. Eur. Phys. J. B 32, 429 (2003)

    Article  ADS  Google Scholar 

  74. Schiller, A., Ingersent, K.: Systematic \(1/d\) corrections to the infinite-dimensional limit of correlated lattice electron models. Phys. Rev. Lett. 75, 113 (1995)

    Article  ADS  Google Scholar 

  75. Sadovskii, M.V., Nekrasov, I.A., Kuchinskii, E.Z., Pruschke, T., Anisimov, V.I.: Pseudogaps in strongly correlated metals: a generalized dynamical mean-field theory approach. Phys. Rev. B 72, 155105 (2005)

    Article  ADS  Google Scholar 

  76. Pairault, S., Sénéchal, D., Tremblay, A.-M.S.: Strong-coupling expansion for the Hubbard model. Phys. Rev. Lett. 80, 5389 (1998)

    Article  ADS  Google Scholar 

  77. Pairault, S., Sénéchal, D., Tremblay, A.-M.: Strong-coupling perturbation theory of the Hubbard model. Eur. Phys. J. B 16, 85 (2000)

    Article  ADS  Google Scholar 

  78. Sarker, S.K.: A new functional integral formalism for strongly correlated Fermi systems. J. Phys. C: Solid State Phys. 21, L667 (1988)

    Article  ADS  Google Scholar 

  79. Stanescu, T.D., Kotliar, G.: Strong coupling theory for interacting lattice models. Phys. Rev. B 70, 205112 (2004)

    Article  ADS  Google Scholar 

  80. Rubtsov, A.N.: Quality of the mean-field approximation: a low-order generalization yielding realistic critical indices for three-dimensional Ising-class systems. Phys. Rev. B 66, 052107 (2002)

    Article  ADS  Google Scholar 

  81. Rubtsov A.N., Small parameter for lattice models with strong interaction, arXiv:cond-mat/0601333, unpublished (2006)

    Google Scholar 

  82. Rubtsov, A.N., Katsnelson, M.I., Lichtenstein, A.I.: Dual fermion approach to nonlocal correlations in the Hubbard model. Phys. Rev. B 77, 033101 (2008)

    Google Scholar 

  83. Hafermann, H.: Numerical Approaches to Spatial Correlations in Strongly Interacting Fermion Systems. Cuvillier Verlag, Göttingen (2010)

    Google Scholar 

  84. Schäfer, J., Schrupp, D., Rotenberg, E., Rossnagel, K., Koh, H., Blaha, P., Claessen, R.: Electronic quasiparticle renormalization on the spin wave energy scale. Phys. Rev. Lett. 92, 097205 (2004)

    Article  ADS  Google Scholar 

  85. Eschrig, M., Norman, M.R: Neutron Resonance: Modeling photoemission and tunneling data in the superconducting state of \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta} \). Phys. Rev. Lett. 85, 3261 (2000)

    Google Scholar 

  86. Schachinger, E., Tu, J.J., Carbotte, J.P.: Angle-resolved photoemission spectroscopy and optical renormalizations: phonons or spin fluctuations. Phys. Rev. B 67, 214508 (2003)

    Article  ADS  Google Scholar 

  87. Claessen, R., Sing, M., Schwingenschlögl, U., Blaha, P., Dressel, M., Jacobsen, C.S.: Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ. Phys. Rev. Lett. 88, 096402 (2002)

    Article  ADS  Google Scholar 

  88. Rubtsov, A.N., Katsnelson, M.I., Lichtenstein, A.I., Georges, A.: Dual fermion approach to the two-dimensional Hubbard model: antiferromagnetic fluctuations and Fermi arcs. Phys. Rev. B 79, 045133 (2009)

    Article  ADS  Google Scholar 

  89. Baym, G., Kadanoff, L.P.: Conservation laws and correlation functions. Phys. Rev. 124, 287 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  90. Abrikosov, A.A., Gor’kov, L.P., Dzyaloshinskii, I.E.: Methods of Quantum Field Theory in Statistical Physics. Pergamon Press, New York (1965)

    Google Scholar 

  91. Irkhin, V.Y., Katsnelson, M.I.: Current carriers in a quantum two-dimensional antiferromagnet. J. Phys.: Condens. Matter 3, 6439 (1991)

    Article  ADS  Google Scholar 

  92. Park, H., Haule, K., Kotliar, G.: Cluster dynamical mean field theory of the mott transition. Phys. Rev. Lett. 101, 186403 (2008)

    Article  ADS  Google Scholar 

  93. Macridin, A., Jarrell, M., Maier, T., Kent, P.R.C., D’Azevedo, E.: Pseudogap and antiferromagnetic correlations in the Hubbard Model. Phys. Rev. Lett. 97, 036401 (2006)

    Article  ADS  Google Scholar 

  94. Ferrero, M., Cornaglia, P.S., Leo, L.D., Parcollet, O., Kotliar, G., Georges, A.: Valence bond dynamical mean-field theory of doped Mott insulators with nodal/antinodal differentiation. Eur. phys. Lett. 85, 57009 (2009)

    Article  ADS  Google Scholar 

  95. Brener, S., Hafermann, H., Rubtsov, A.N., Katsnelson, M.I., Lichtenstein, A.I.: Dual fermion approach to susceptibility of correlated lattice fermions. Phys. Rev. B 77, 195105 (2008)

    Article  ADS  Google Scholar 

  96. Li, G., Lee, H., Monien, H.: Determination of the lattice susceptibility within the dual fermion method. Phys. Rev. B 78, 195105 (2008)

    Article  ADS  Google Scholar 

  97. Lee, H., Li, G., Monien, H.: Hubbard model on the triangular lattice using dynamical cluster approximation and dual fermion methods. Phys. Rev. B 78, 205117 (2008)

    Article  ADS  Google Scholar 

  98. Hafermann, H., Kecker, M., Brener, S., Rubtsov, A.N., Katsnelson, M.I., Lichtenstein, A.I.: Dual fermion approach to high-temperature superconductivity. J. Supercond. Nov. Magn. 22, 45 (2009)

    Article  Google Scholar 

  99. Hafermann, H., Brener, S., Rubtsov, A.N., Katsnelson, M.I., Lichtenstein, A.I.: Cluster dual fermion approach to nonlocal correlations. JETP Lett. 86, 677 (2007)

    Article  ADS  Google Scholar 

  100. Hafermann, H., Li, G., Rubtsov, A.N., Katsnelson, M.I., Lichtenstein, A.I., Monien, H.: Efficient perturbation theory for quantum lattice models. Phys. Rev. Lett. 102, 206401 (2009)

    Article  ADS  Google Scholar 

  101. Hafermann, H., Jung, C., Brener, S., Katsnelson, M.I., Rubtsov, A.N., Lichtenstein, A.I.: Superperturbation solver for quantum impurity models. Europhys. Lett. 85, 27007 (2009)

    Article  ADS  Google Scholar 

  102. Schollwöck, U.: The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  Google Scholar 

  103. Balzer, M., Hanke, W., Potthoff, M.: Mott transition in one dimension: benchmarking dynamical cluster approaches. Phys. Rev. B 77, 045133 (2008)

    Article  ADS  Google Scholar 

  104. Mishchenko, A.S., Prokof’ev, N.V., Sakamoto, A., Svistunov, B.V.: Diagrammatic quantum Monte Carlo study of the Fröhlich polaron. Phys. Rev. B 62, 6317 (2000)

    Article  ADS  Google Scholar 

  105. Migdal, A.B.: Theory of Finite Fermi Systems and Applications to Atomic Nuclei. Interscience Publishers, New York (1967)

    Google Scholar 

  106. Nozières, P.: Theory of Interacting Fermi Systems. Benjamin Day, New York (1964)

    MATH  Google Scholar 

  107. Auerbach, A. (eds): Interacting Electrons and Quantum Magnetism. Springer, New York (1998)

    Google Scholar 

  108. Hugenholtz, N.: Perturbation theory of large quantum systems. Physica 23, 481 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  109. Bickers, N.E., Scalapino, D.J., White, S.R.: Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard Model. Phys. Rev. Lett. 62, 961 (1989)

    Article  ADS  Google Scholar 

  110. Bickers, N.E., Scalapino, D.J.: Conserving approximations for strongly fluctuating electron systems. I. Formalism and calculational approach. Ann. Phys. 193, 206 (1989)

    Article  ADS  Google Scholar 

  111. Bulut, N., Scalapino, D.J., White, S.R.: Bethe-Salpeter eigenvalues and amplitudes for the half-filled two-dimensional Hubbard model. Phys. Rev. B 47, 14599 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to the input of our collaborators and colleagues Markus Aichhorn, Vladimir Anisimov, Matthias Balzer, Silke Biermann, Lewin Boehnke, Sergej Brener, Emanuel Gull, Václav Janiš, Christoph Jung, Martin Kecker, Gabriel Kotliar, Gang Li, Andrew Millis, Hartmut Monien, Alexander Poteryaev, Michael Potthoff, Leonid Pourovskii, Matouš Ringel and Philipp Werner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Hafermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hafermann, H., Lechermann, F., Rubtsov, A.N., Katsnelson, M.I., Georges, A., Lichtenstein, A.I. (2012). Strong Electronic Correlations: Dynamical Mean-Field Theory and Beyond. In: Cabra, D., Honecker, A., Pujol, P. (eds) Modern Theories of Many-Particle Systems in Condensed Matter Physics. Lecture Notes in Physics, vol 843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10449-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10449-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10448-0

  • Online ISBN: 978-3-642-10449-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics