Skip to main content

Electronic Liquid Crystal Phases in Strongly Correlated Systems

  • Chapter
  • First Online:
Modern Theories of Many-Particle Systems in Condensed Matter Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 843))

Abstract

I discuss the electronic liquid crystal (ELC) phases in correlated electronic systems, what these phases are and in what context they arise. I will go over the strongest experimental evidence for these phases in a variety of systems: the two-dimensional electron gas (2DEG) in magnetic fields, the bilayer material \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\) (also in magnetic fields), and a set of phenomena in the cuprate superconductors (and more recently in the pnictide materials) that can be most simply understood in terms of ELC phases. Finally we will go over the theory of these phases, focusing on effective field theory descriptions and some of the known mechanisms that may give rise to these phases in specific models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    You may call the ELC phases the anisotropic states of point particles!

  2. 2.

    On the other hand, in the case of a crystal phase, the expansion is

    $$ \rho({\user2{r}})=\rho_0({\user2{r}})+\sum_{{{\user2{K}}} \in \Upgamma} \rho_{{\user2{K}}}({\user2{r}}) e^{i {{\user2{K}}}\cdot {{\user2{r}}}}+ \hbox{c.c.} $$
    (2.4)

    where \(\Upgamma\) denotes the set of primitive lattice vectors of the crystal phase [3].

  3. 3.

    I will not discuss the case of spiral order here.

  4. 4.

    For a lattice system, rotational symmetries are those of the point (or space) group symmetry of the lattice. Thus, nematic order parameters typically become Ising-like (on a square lattice) or three-state Potts on a triangular lattice (and so forth).

  5. 5.

    Ref. [24] is a recent, complementary, review of the phenomenology of nematic phases in strongly correlated systems.

  6. 6.

    The anisotropy is strongly suppressed by disorder.

  7. 7.

    The 2DEG in a strong magnetic field is inherently a strongly correlated system as the interaction is always much bigger than the (vanishing) kinetic energy.

  8. 8.

    \(\hbox{Cu}_x{\hbox{TiSe}_2}\) is known to become superconducting [89]. The temperature-pressure phase diagram of \(\hbox{TiSe}_2\) exhibits a superconducting dome enclosing the quantum critical point at which the CDW state melts [92].

  9. 9.

    In principle the order parameter of the stripe state may not be pure sinusoidal and will have higher harmonics of the fundamental order parameter.

  10. 10.

    I will ignore here physically correct but more complex orders such as helical phases.

  11. 11.

    This state is a close relative of the resonating valence bond (RVB) state originally proposed as a model system for a high \(T_c\) superconducting state [18, 113], i.e. a (non-resonating) valence bond (VB) state.

  12. 12.

    A difficulty in interpreting the DMRG results lies in the boundary conditions that are used that tend to enhance inhomogeneous, stripe-like, phases.

  13. 13.

    \(\Updelta_{{\rm SC},2}\) is the most relevant operator. For a model with \(\kappa(k_{\perp})=[\kappa_0+\kappa_1\cos(k_{\perp})]^2,\) all perturbations are irrelevant for large \(\kappa_0\) and small \(|\kappa_0-\kappa_1|.\)

  14. 14.

    In Ref. [125] a similar pattern was also considered except that the (say) ‘B′ stripes do no have a spin gap. This patterns was used to show how a crude model with nodal quasiparticles can arise in an inhomogeneous state.

  15. 15.

    Josephson coupling is due to pair tunneling from one stripe to a neighboring one. Josephson processes arise in second order in perturbation theory and involve intermediate states with excitations energies of order J and have an amplitude controlled by \(\delta t.\)

  16. 16.

    While there is some numerical evidence for a state of this type in variational Monte Carlo calculations [115] and in slave particle mean field theory [114, 146] (see, however, Ref.[147, 148]), a consistent and controlled microscopic theory is yet to be developed. Since the difference between the energies of the competing states seen numerically is quite small one must conclude that they are all reasonably likely.

  17. 17.

    A state that is usually described as a pair crystal is commonly known as a pair density wave [149, 150]. However that state cannot be distinguished by symmetry from a (two) CDWs coexisting with a uniform SC.

  18. 18.

    A charge 4e SC order parameter is an expectation value of a four fermion operator.

  19. 19.

    A more elaborate version of this phase diagram, based on a one-loop Kosterlitz RG calculation for physically very different systems with the same RG structure system, was given in Refs. [154156].

  20. 20.

    Although the Pomeranchuk argument is standard and reproduced in all the textbooks on Fermi liquid theory (see, e.g. Ref.[157]) the consequences of this instability were not pursued until quite recently.

  21. 21.

    In fact, perturbative renormalization group calculations [168, 169] have found a runaway flow in the \(d_{x^2-y^2}\) particle-hole channel, which is a nematic instability, but it was not recognized as such. See, however, Ref.[170].

  22. 22.

    Another class of nematic state can occur inside a \(d_{x^2-y^2}\) superconductor. This quantum phase transition involves primarily the nodal quasiparticles of the superconductor and it is tractable within large N type approximations [188, 189].

  23. 23.

    There are other collective modes at higher energies. In particular there is an underdamped longitudinal collective mode with z = 2 [39]. These higher energy modes contribute to various crossover effects [192], but decouple in the asymptotic quantum critical regime.

  24. 24.

    A similar behavior was found in the quantum Lifshitz model at its QCP [207].

  25. 25.

    In 3D the situation is more complex and the possible are more subtle. In particular, in 3D there are three vector order parameters involved [17].

  26. 26.

    The \(\ell=0\) case is, of course, just the conventional Stoner ferromagnetic instability.

  27. 27.

    The term “nematic-spin-nematic′′ is a poor terminology. A spin nematic is a state with a magnetic order parameter that is a traceless symmetric tensor, which this state does not.

  28. 28.

    The p-wave \((\ell=1)\;\beta\) phase has the same physics as the ‘spin-split′ metal of Ref. [221]. A similar state was proposed in Ref. [222] as an explanation of the “hidden order′′ phase of \(\hbox{URu}_2\hbox{Si}_2.\)

  29. 29.

    This is consistent with the general arguments of Ref. [224].

  30. 30.

    It also turns out that in the (so far physically unrealizable) case of x = 1, the ground state is a nematic insulator as each row is now full. However, for \(x \to 1\) the ground state is again a nematic metal.

  31. 31.

    Important work with a similar approach has been done on the problem of the quantum melting of the stripe state in quantum Hall systems [36, 37].

  32. 32.

    For a different perspective see Ref. [230].

References

  1. Kivelson, S.A., Fradkin, E., Emery, V.J.: Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550 (1998)

    ADS  Google Scholar 

  2. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. Oxford Science Publications/ Clarendon Press, Oxford, UK (1993)

    Google Scholar 

  3. Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics. Cambridge University Press, Cambridge, UK (1995)

    Google Scholar 

  4. Kivelson, S.A., Fradkin, E., Oganesyan, V., Bindloss, I., Tranquada, J., Kapitulnik, A., Howald, C.: How to detect fluctuating stripes in high tempertature superconductors. Rev. Mod. Phys. 75, 1201 (2003)

    ADS  Google Scholar 

  5. Berg, E., Fradkin, E., Kim, E.-A., Kivelson, S., Oganesyan, V., Tranquada, J.M., Zhang, S.: Dynamical layer decoupling in a stripe-ordered high \(T_c\) superconductor. Phys. Rev. Lett. 99, 127003 (2007)

    ADS  Google Scholar 

  6. Berg, E., Chen, C.-C., Kivelson, S.A.: Stability of nodal quasiparticles in superconductors with coexisting orders. Phys. Rev. Lett. 100, 027003 (2008)

    ADS  Google Scholar 

  7. Fulde, P., Ferrell, R.A.: Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550 (1964)

    ADS  Google Scholar 

  8. Larkin, A.I., Ovchinnikov, Y.N.: Nonuniform state of superconductors. Zh. Eksp. Teor. Fiz. 47, 1136 (1964). (Sov. Phys. JETP. 20, 762 (1965))

    Google Scholar 

  9. Fradkin, E., Kivelson, S.A., Manousakis, E., Nho, K.: Nematic phase of the two-dimensional electron gas in a magnetic field. Phys. Rev. Lett. 84, 1982 (2000)

    ADS  Google Scholar 

  10. Cooper, K.B., Lilly, M.P., Eisenstein, J.P., Pfeiffer, L.N., West, K.W.: Onset of anisotropic transport of two-dimensional electrons in high Landau levels: possible isotropic-to-nematic liquid-crystal phase transition. Phys. Rev. B 65, 241313 (2002)

    ADS  Google Scholar 

  11. Ando, Y., Segawa, K., Komiya, S., Lavrov, A.N.: Electrical resistivity anisotropy from self-organized one-dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002)

    ADS  Google Scholar 

  12. Borzi, R.A., Grigera, S.A., Farrell, J., Perry, R.S., Lister, S.J.S., Lee, S.L., Tennant, D.A., Maeno, Y., Mackenzie, A.P.: Formation of a nematic fluid at high fields in \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\). Science 315, 214 (2007)

    ADS  Google Scholar 

  13. Hinkov, V., Haug, D., Fauqué, B., Bourges, P., Sidis, Y., Ivanov, A., Bernhard, C., Lin, C.T., Keimer, B.: Electronic liquid crystal state in superconducting \(\hbox{YBa}_2\hbox{Cu}_3\hbox{O}_{6.45}\). Science 319, 597 (2008)

    Google Scholar 

  14. Sun, K., Fradkin, E.: Time-reversal symmetry breaking and spontaneous anomalous Hall effect in Fermi fluids. Phys. Rev. B 78, 245122 (2008)

    ADS  Google Scholar 

  15. Varma, C.M.: A theory of the pseudogap state of the cuprates. Philos. Mag. 85, 1657 (2005)

    ADS  Google Scholar 

  16. Wu, C., Zhang, S.-C.: Dynamic generation of spin-orbit coupling. Phys. Rev. Lett. 93, 036403 (2004)

    ADS  Google Scholar 

  17. Wu, C.J., Sun, K., Fradkin, E., Zhang, S.-C.: Fermi liquid instabilities in the spin channel. Phys. Rev. B 75, 115103 (2007)

    ADS  Google Scholar 

  18. Anderson, P.W.: The resonating valence bond state of \(\hbox{La}_2\hbox{CuO}_4\) and superconductivity. Science 235, 1196 (1987)

    ADS  Google Scholar 

  19. Emery, V.J., Kivelson, S.A., Lin, H.Q.: Phase separation in the t-J model. Phys. Rev. Lett. 64, 475 (1990)

    ADS  Google Scholar 

  20. Dagotto, E.: Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763 (1994)

    ADS  Google Scholar 

  21. Emery, V.J., Kivelson, S.A.: Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597 (1993)

    ADS  Google Scholar 

  22. Seul, M., Andelman, D.: Domain shapes and patterns: the phenomenology of modulated phases. Science 267, 476 (1995)

    ADS  Google Scholar 

  23. Lorenz, C.P., Ravenhall, D.G., Pethick, C.J.: Neutron star crusts. Phys. Rev. Lett. 70, 379 (1993)

    ADS  Google Scholar 

  24. Fradkin, E., Kivelson, S.A., Lawler, M.J., Eisenstein, J.P., Mackenzie, A.P.: Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 71 (2010)

    Google Scholar 

  25. Lilly, M.P., Cooper, K.B., Eisenstein, J.P., Pfeiffer, L.N., West, K.W.: Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett. 82, 394 (1999)

    ADS  Google Scholar 

  26. Lilly, M.P., Cooper, K.B., Eisenstein, J.P., Pfeiffer, L.N., West, K.W.: Anisotropic states of two-dimensional electron systems in high Landau levels: effect of an in-plane magnetic field. Phys. Rev. Lett. 83, 824 (1999)

    ADS  Google Scholar 

  27. Du, R.R., Tsui, D.C., Störmer, H.L., Pfeiffer, L.N., Baldwin, K.W., West, K.W.: Strongly anisotropic transport in higher two-dimensional Landau levels. Solid State Comm. 109, 389 (1999)

    ADS  Google Scholar 

  28. Pan, W., Du, R.R., Störmer, H.L., Tsui, D.C., Pfeiffer, L.N., Baldwin, K.W., West, K.W.: Strongly anisotropic electronic transport at Landau level filling factor \(\nu = 9/2\) and \(\nu=5/2\) under tilted magnetic field. Phys. Rev. Lett. 83, 820 (1999)

    ADS  Google Scholar 

  29. Koulakov, A.A., Fogler, M.M., Shklovskii, B.I.: Charge density wave in two-dimensional electron liquid in weak magnetic field. Phys. Rev. Lett. 76, 499 (1996)

    ADS  Google Scholar 

  30. Moessner, R., Chalker, J.T.: Exact results for interacting electrons in high Landau levels. Phys. Rev. B 54, 5006 (1996)

    ADS  Google Scholar 

  31. Fradkin, E., Kivelson, S.A.: Liquid crystal phases of quantum Hall systems. Phys. Rev. B 59, 8065 (1999)

    ADS  Google Scholar 

  32. MacDonald, A.H., Fisher, M.P.A.: Quantum theory of quantum Hall smectics. Phys. Rev. B 61, 5724 (2000)

    ADS  Google Scholar 

  33. Barci, D.G., Fradkin, E., Kivelson, S.A., Oganesyan, V.: Theory of the quantum Hall smectic phase. I. Low-energy properties of the quantum Hall smectic fixed point. Phys. Rev. B 65, 245319 (2002)

    ADS  Google Scholar 

  34. Cooper, K.B., Lilly, M.P., Eisenstein, J.P., Jungwirth, T., Pfeiffer, L.N., West, K.W.: An investigation of orientational symmetry-breaking mechanisms in high Landau levels. Sol. State Commun. 119, 89 (2001)

    ADS  Google Scholar 

  35. Cooper, K.B., Eisenstein, J.P., Pfeiffer, L.N., West, K.W.: Observation of narrow-band noise accompanying the breakdown of insulating states in high Landau levels. Phys. Rev. Lett. 90, 226803 (2003)

    ADS  Google Scholar 

  36. Wexler, C., Dorsey, A.T.: Disclination unbinding transition in quantum Hall liquid crystals. Phys. Rev. B 64, 115312 (2001)

    ADS  Google Scholar 

  37. Radzihovsky, L., Dorsey, A.T.: Theory of quantum Hall nematics. Phys. Rev. Lett. 88, 216802 (2002)

    ADS  Google Scholar 

  38. Doan, Q.M., Manousakis, E.: Quantum nematic as ground state of a two-dimensional electron gas in a magnetic field. Phys. Rev. B 75, 195433 (2007)

    ADS  Google Scholar 

  39. Oganesyan, V., Kivelson, S.A., Fradkin, E.: Quantum theory of a nematic Fermi fluid. Phys. Rev. B 64, 195109 (2001)

    ADS  Google Scholar 

  40. Grigera, S.A., Gegenwart, P., Borzi, R.A., Weickert, F., Schofield, A.J., Perry, R.S., Tayama, T., Sakakibara, T., Maeno, Y., Green, A.G. et al.: Disorder-sensitive phase formation linked to metamagnetic quantum criticality. Science 306, 1154 (2004)

    ADS  Google Scholar 

  41. Fradkin, E., Kivelson, S.A., Oganesyan, V.: Discovery of a nematic electron fluid in a transition metal oxide. Science 315, 196 (2007)

    Google Scholar 

  42. Grigera, S.A., Perry, R.S., Schofield, A.J., Chiao, M., Julian, S.R., Lonzarich, G.G., Ikeda, S.I., Maeno, Y., Millis, A.J., Mackenzie, A.P.: Magnetic field-tuned quantum criticality in the metallic ruthenate \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\). Science 294, 329 (2001)

    ADS  Google Scholar 

  43. Millis, A.J., Schofield, A.J., Lonzarich, G.G., Grigera, S.A.: Metamagnetic quantum criticality. Phys. Rev. Lett. 88, 217204 (2002)

    ADS  Google Scholar 

  44. Perry, R.S., Kitagawa, K., Grigera, S.A., Borzi, R.A., Mackenzie, A.P., Ishida, K., Maeno, Y.: Multiple first-order metamagnetic transitions and quantum oscillations in ultrapure \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\). Phys. Rev. Lett. 92, 166602 (2004)

    ADS  Google Scholar 

  45. Green, A.G., Grigera, S.A., Borzi, R.A., Mackenzie, A.P., Perry, R.S., Simons, B.D.: Phase bifurcation and quantum fluctuations in \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\). Phys. Rev. Lett. 95, 086402 (2005)

    ADS  Google Scholar 

  46. Jamei, R., Kivelson. Spivak, B.: Universal aspects of Coulomb-frustrated phase separation. Phys. Rev. Lett. 94, 056805 (2005)

    ADS  Google Scholar 

  47. Lorenzana, J., Castellani, C., Di Castro, C.: Mesoscopic frustrated phase separation in electronic systems. Euro. Phys. Lett. 57, 704 (2002)

    ADS  Google Scholar 

  48. Kivelson, S.A., Fradkin, E.: In: Schrieffer, J.R., Brooks, J. (eds.) Handbook of High Temperature Superconductivity, pp. 569–595. Springer-Verlag, New York (2007)

    Google Scholar 

  49. Chakravarty, S., Laughlin, R.B., Morr, D.K., Nayak, C.: Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)

    ADS  Google Scholar 

  50. Fujita, M., Goka, H., Yamada, K., Tranquada, J.M., Regnault, L.P.: Stripe order depinning and fluctuations in \(\hbox{La}_{1.875}\hbox{Ba}_{0.125}\hbox{CuO}_4\) and \(\hbox{La}_{1.875}\hbox{Ba}_{0.075}\hbox{Sr}_{0.050}\hbox{CuO}_4\). Phys. Rev. B 70, 104517 (2004)

    ADS  Google Scholar 

  51. Abbamonte, P., Rusydi, A., Smadici, S., Gu, G.D., Sawatzky, G.A., Feng, D.L.: Spatially modulated ‘Mottness’ in \(\hbox{La}_{2-x}\hbox{Ba}_{x}\hbox{CuO}_4\). Nature Phys. 1, 155 (2005)

    ADS  Google Scholar 

  52. Tranquada, J.M.: In: Schrieffer, J.R., Brooks, J. (ed.) Treatise of High Temperature Superconductivity, pp. 257–298. Springer-Verlag, New York (2007)

    Google Scholar 

  53. Tranquada, J.M., Sternlieb, B.J., Axe, J.D., Nakamura, Y., Uchida, S.: Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561 (1995)

    ADS  Google Scholar 

  54. Tranquada, J.M., Woo, H., Perring, T.G., Goka, H., Gu, G.D., Xu, G., Fujita, M., Yamada, K.: Quantum magnetic excitations from stripes in copper-oxide superconductors. Nature 429, 534 (2004)

    ADS  Google Scholar 

  55. Haug, D., Hinkov, V., Suchaneck, A., Inosov, D.S., Christensen, N.B., Niedermayer, C., Bourges, P., Sidis, Y., Park, J.T., Ivanov, A. et al.: Magnetic-field-enhanced incommensurate magnetic order in the underdoped high-temperature superconductor \(\hbox{YBa}_{2}\hbox{Cu}_{3}\hbox{O}_{6.45}\). Phys. Rev. Lett. 103, 017001 (2009)

    ADS  Google Scholar 

  56. Hinkov, V., Bourges, P., Pailhés, S., Sidis, Y., Ivanov, A., Frost, C.D., Perring, T.G., Lin, C.T., Chen, D.P., Keimer, B.: Spin dynamics in the pseudogap state of a high-temperature superconductor. Nature Phys. 3, 780 (2007)

    ADS  Google Scholar 

  57. Hinkov, V., Bourges, P., Pailhés, S., Sidis, Y., Ivanov, A., Lin, C., Chen, D., Keimer, B.: In-plane anisotropy of spin excitations in the normal and superconducting states of underdoped \(\hbox{YBa}_{2}\hbox{Cu}_{3}\hbox{O}_{6+x}\). Nature Phys. 3, 780 (2007)

    ADS  Google Scholar 

  58. Mook, H.A., Dai, P., Dog˘an, F., Hunt, R.D.: One-dimensional nature of the magnetic fluctuations in \(\hbox{YBa}_2\hbox{Cu}_{3}\hbox{O}_{6.6}\). Nature 404, 729 (2000)

    ADS  Google Scholar 

  59. Stock, C., Buyers, W.J.L., Liang, R., Peets, D., Tun, Z., Bonn, D., Hardy, W.N., Birgeneau, R.J.: Dynamic stripes and resonance in the superconducting and normal phases of \(\hbox{YBa}_2\hbox{Cu}_3\hbox{O}_{6.5}\) ortho-II superconductor. Phys. Rev. B 69, 014502 (2004)

    ADS  Google Scholar 

  60. Daou, R., Chang, J., LeBoeuf, D., Cyr-Choinière, O., Laliberté, F., Doiron-Leyraud, N., Ramshaw, B.J., Liang, R., Bonn, D.A., Hardy, W.N. et al.: Broken rotational symmetry in the pseudogap phase of a high- \(T_c\) superconductor. Nature 463, 519 (2010)

    ADS  Google Scholar 

  61. Li, L., Wang, Y., Naughton, M.J., Komiya, S., Ono, S., Ando, Y., Ong, N.P.: Magnetization, nernst effect and vorticity in the cuprates. J. Magn. Magn. Mater. 310, 460 (2007)

    ADS  Google Scholar 

  62. Cyr-Choinière, O., Daou, R., Laliberté, F., LeBoeuf, D., Doiron-Leyraud, N., Chang, J., Yan, J.-Q., Cheng, J.-G., Zhou, J.-S., Goodenough, J.B. et al.: Enhancement of the nernst effect by stripe order in a high- \(T_c\) superconductor. Nature 458, 743 (2009)

    ADS  Google Scholar 

  63. Matsuda, M., Fujita, M., Wakimoto, S., Fernandez-Baca, J.A., Tranquada, J.M., Yamada, K.: Magnetic excitations of the diagonal incommensurate phase in lightly-doped \(\hbox{La}_{2-x}\hbox{Sr}_x\hbox{CuO}_4\). Phys. Rev. Lett. 101, 197001 (2008)

    ADS  Google Scholar 

  64. Lake, B., Rønnow, H.M., Christensen, N.B., Aeppli, G., Lefmann, K., McMorrow, D.F., Vorderwisch, P., Smeibidl, P., Mangkorntong, N., Sasagawa, T., Nohara, M., Takagi, H., Mason, T.E.: Antiferromagnetic order induced by an applied magnetic field in a high temperature superconductor. Nature 415, 299 (2002)

    ADS  Google Scholar 

  65. Li, Q., Hücker, M., Gu, G.D., Tsvelik, A.M., Tranquada, J.M.: Two-dimensional superconducting fluctuations in stripe-ordered \(\hbox{La}_{1.875}\hbox{Ba}_{0.125}\hbox{CuO}_4\). Phys. Rev. Lett. 99, 067001 (2007)

    ADS  Google Scholar 

  66. Valla, T., Fedorov, A.V., Lee, J., Davis, J.C., Gu, G.D.: The ground state of the pseudogap in cuprate superconductors. Science 314, 1914 (2006)

    ADS  Google Scholar 

  67. He, R.-H., Tanaka, K., Mo, S.-K., Sasagawa, T., Fujita, M., Adachi, T., Mannella, N., Yamada, K., Koike, Y., Hussain, Z. et al.: Energy gaps in the failed high- \(T_c\) superconductor \(\hbox{La}_{1.875}\hbox{Ba}_{0.125}\hbox{CuO}_4\). Nat. Phys. 5, 119 (2008)

    Google Scholar 

  68. Berg, E., Fradkin, E., Kivelson, S.A.: Charge 4e superconductivity from pair density wave order in certain high temperature superconductors. Nature Phys. 5, 830 (2009)

    ADS  Google Scholar 

  69. Schafgans, A.A., LaForge, A.D., Dordevic, S.V., Qazilbash, M.M., Komiya, S., Ando, Y., Basov, D.N.: Towards two-dimensional superconductivity in \(\hbox{La}_{2-x}\hbox{Sr}_{x}\hbox{CuO}_4\) in a moderate magnetic field. Phys. Rev. Lett. 104, 157002 (2010)

    ADS  Google Scholar 

  70. Kohsaka, Y., Taylor, C., Fujita, K., Schmidt, A., Lupien, C., Hanaguri, T., Azuma, M., Takano, M., Eisaki, H., Takagi, H. et al.: An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380 (2007)

    ADS  Google Scholar 

  71. Howald, C., Eisaki, H., Kaneko, N., Kapitulnik, A.: Coexistence of charged stripes and superconductivity in \(\hbox{Bi}_2\hbox{Sr}_2\hbox{CaCu}_2\hbox{O}_{8+\delta}\). Proc. Natl. Acad. Sci. U.S.A. 100, 9705 (2003)

    ADS  Google Scholar 

  72. Hanaguri, T., Lupien, C., Kohsaka, Y., Lee, D.H., Azuma, M., Takano, M., Takagi, H., Davis, J.C.: A ‘checkerboard’ electronic crystal state in lightly hole-doped \(\hbox{Ca}_{2-x}\hbox{Na}_x\hbox{CuO}_2\hbox{Cl}_2\). Nature 430, 1001 (2004)

    ADS  Google Scholar 

  73. Vershinin, M., Misra, S., Ono, S., Abe, Y., Ando, Y., Yazdani, A.: Local ordering in the pseudogap state of the high- \(T_c\) superconductor \(\hbox{Bi}_2\hbox{Sr}_2\hbox{CaCu}_2\hbox{O}_{8+\delta}\). Science 303, 1005 (2004)

    Google Scholar 

  74. Lawler, M.J., Fujita, K., Lee, J.W., Schmidt, A.R., Kohsaka, Y., Kim, C.K., Eisaki, H., Uchida, S., Davis, J.C., Sethna, J.P. et al.: Electronic nematic ordering of the intra-unit-cell pseudogap states in underdoped \(\hbox{Bi}_2\hbox{Sr}_2\hbox{CaCu}_2\hbox{O}_{8+\delta}\). Nature 466, 347 (2009)

    ADS  Google Scholar 

  75. Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor \(\hbox{La[O}_{1-x}\hbox{F}_x].\) FeAs (x = 0.05–0.12) with \(T_c=26\;{\hbox{K}}\). J. Am. Chem. Soc. 130, 3296 (2008)

    Google Scholar 

  76. Mu, G., Zhu, X., Fang, L., Shan, L., Ren, C., Wen, H.H.: Nodal gap in Fe-based layered superconductor \(\hbox{LaO}_{0.9}\hbox{F}_{0.1-\delta}\hbox{FeAs}\) probed by specific heat measurements. Chin. Phys. Lett. 25, 2221 (2008)

    ADS  Google Scholar 

  77. Fang, C., Yao, H., Tsai, W.-F., Hu, J.P., Kivelson, S.A.: Theory of electron nematic order in LaOFeAs. Phys. Rev. B 77, 224509 (2008)

    ADS  Google Scholar 

  78. Xu, C., Müller, M., Sachdev, S.: Ising and spin orders in Iron-based superconductors. Phys. Rev. B 78, 020501 (R) (2008)

    ADS  Google Scholar 

  79. Chuang, T.-M., Allan, M., Lee, J., Xie, Y., Ni, N., Bud’ko, S., Boebinger, G.S., Canfield, P.C., Davis, J.C.: Nematic electronic structure in the ‘parent’ state of the iron-based superconductor \(\hbox{Ca(Fe}_{1-x}\hbox{Co}_x)_{2}\hbox{As}_2\). Science 327, 181 (2010)

    ADS  Google Scholar 

  80. Dagotto,, E., Hotta,, T., Moreo, A.: Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1 (2001)

    ADS  Google Scholar 

  81. Rübhausen, M., Yoon, S., Cooper, S.L., Kim, K.H., Cheong, S.W.: Anisotropic optical signatures of orbital and charge ordering in \(\hbox{Bi}_{1-x}\hbox{Ca}_{x}\hbox{MnO}_3\). Phys. Rev. B 62, R4782 (2000)

    ADS  Google Scholar 

  82. Grüner, G.: The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129 (1988)

    ADS  Google Scholar 

  83. Grüner, G.: The dynamics of spin-density-waves. Rev. Mod. Phys. 66, 1 (1994)

    ADS  Google Scholar 

  84. McMillan, W.L.: Landau theory of charge density waves in transition-metal dichalcogenides. Phys. Rev. B 12, 1187 (1975)

    ADS  Google Scholar 

  85. McMillan, W.L.: Theory of discommensurations and the commensurate-incommensurate charge-density-wave phase transition. Phys. Rev. B 14, 1496 (1976)

    ADS  Google Scholar 

  86. Emery, V.J., Fradkin, E., Kivelson, S.A., Lubensky, T.C.: Quantum theory of the smectic metal state in stripe shases. Phys. Rev. Lett. 85, 2160 (2000)

    ADS  Google Scholar 

  87. Carlson, E.W., Emery, V.J., Kivelson, S.A., Orgad, D.: In: Bennemann, K.H., Ketterson, J.B. (ed.) The Physics of Conventional and Unconventional Superconductors, vol. II, Springer-Verlag, Berlin (2004)

    Google Scholar 

  88. Snow, C.S., Karpus, J.F., Cooper, S.L., Kidd, T.E., Chiang, T.-C.: Quantum melting of the charge-density-wave state in 1T- \(\hbox{TiSe}_2\). Phys. Rev. Lett. 91, 136402 (2003)

    ADS  Google Scholar 

  89. Morosan, E., Zandbergen, H.W., Dennis, B.S., Bos, J.W., Onose, Y., Klimczuk, T., Ramirez, A.P., Ong, N.P., Cava, R.J.: Superconductivity in \(\hbox{Cu}_x\hbox{TiSe}_2\). Nature Phys. 2, 44 (2006)

    Google Scholar 

  90. Barath, H., Kim, M., Karpus, J.F., Cooper, S.L., Abbamonte, P., Fradkin, E., Morosan, E., Cava, R.J.: Quantum and classical mode softening near the charge-density-wave/superconductor transition of \(\hbox{Cu}_x\hbox{TiSe}_2:\) Raman spectroscopic studies. Phys. Rev. Lett. 100, 106402 (2008)

    ADS  Google Scholar 

  91. Dai, H., Chen, H., Lieber, C.M.: Weak pinning and hexatic order in a doped two-dimensional charge-density-wave system. Phys. Rev. Lett. 66, 3183 (1991)

    ADS  Google Scholar 

  92. Kusmartseva, A.F., Sipos, B., Berker, H., Forró, L., Tutiš, E.: Pressure induced superconductivity in pristine 1T- \(\hbox{TiSe}_2\). Phys. Rev. Lett. 103, 236401 (2009)

    ADS  Google Scholar 

  93. Brouet, V., Yang, W.L., Zhou, X.J., Hussain, Z., Ru, N., Shin, K.Y., Fisher, I.R., Shen, Z.X.: Fermi surface reconstruction in the CDW state of \(\hbox{CeTe}_3\) observed by photoemission. Phys. Rev. Lett. 93, 126405 (2004)

    ADS  Google Scholar 

  94. Laverock, J., Dugdale, S.B., Major, Z., Alam, M.A., Ru, N., Fisher, I.R., Santi, G., Bruno, E.: Fermi surface nesting and charge-density wave formation in rare-earth tritellurides. Phys. Rev. B 71, 085114 (2005)

    ADS  Google Scholar 

  95. Sacchetti, A., Degiorgi, L., Giamarchi, T., Ru, N., Fisher, I.R.: Chemical pressure and hidden one-dimensional behavior in rare-earth tri-telluride charge-density-wave compounds. Phys. Rev. B 74, 125115 (2006)

    ADS  Google Scholar 

  96. Fang, A., Ru, N., Fisher, I.R., Kapitulnik, A.: STM studies of Tb \(\hbox{Te}_3:\) evidence for a fully incommensurate charge density wave. Phys. Rev. Lett. 99, 046401 (2007)

    ADS  Google Scholar 

  97. Yao, H., Robertson, J.A., Kim, E.-A., Kivelson, S.A.: Theory of stripes in quasi-two-dimensional rare-earth tritellurides. Phys. Rev. B 74, 245126 (2006)

    ADS  Google Scholar 

  98. Vojta, M.: Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity. Adv. Phys. 58, 564 (2009)

    Google Scholar 

  99. Brazovskii, S., Kirova, N.: Electron self-localization and superstructures in quasi one-dimensional dielectrics. Sov. Sci. Rev. A 5, 99 (1984)

    Google Scholar 

  100. Kivelson, S.A., Emery, V.J.: In: Bedell, K., Wang, Z., Meltzer, D.E., Balatsky, A.V., Abrahams, E. (ed.) Strongly Correlated Electron Materials: The Los Alamos Symposium 1993, pp. 619–650. Addison-Wesley, Redwood City (1994)

    Google Scholar 

  101. Zaanen, J., Gunnarsson, O.: Charged magnetic domain lines and the magnetism of high \(\hbox{T}_c\) oxides. Phys. Rev. B 40, 7391 (1989)

    ADS  Google Scholar 

  102. Schulz, H.J.: Incommensurate antiferromagnetism in the 2-dimensional Hubbard model. Phys. Rev. Lett. 64, 1445 (1990)

    ADS  Google Scholar 

  103. Poilblanc, D., Rice, T.M.: Charged solitons in the hartree–fock approximation to the large-U Hubbard model. Phys. Rev. B 39, 9749 (1989)

    ADS  Google Scholar 

  104. Machida, K.: Magnetism in \(\hbox{La}_{2}\hbox{CuO}_{4}\) based compounds. Physica C 158, 192 (1989)

    ADS  Google Scholar 

  105. Kato, M., Machida, K., Nakanishi, H., Fujita, M.: Soliton lattice modulation of incommensurate spin density wave in two dimensional Hubbard model —a mean field study. J. Phys. Soc. Jpn. 59, 1047 (1990)

    ADS  Google Scholar 

  106. Kivelson, S.A., Emery, V.J.: Topological doping. Synth. Met. 80, 151 (1996)

    Google Scholar 

  107. Emery, V.J., Kivelson, S.A., Tranquada, J.M.: Stripe phases in high-temperature superconductors. Proc. Natl. Acad. Sci. USA 96, 8814 (1999)

    ADS  Google Scholar 

  108. Pryadko, L.P., Kivelson, S.A., Emery, V.J., Bazaliy, Y.B., Demler, E.A.: Topological doping and the stability of stripe phases. Phys. Rev. B 60, 7541 (1999)

    ADS  Google Scholar 

  109. Berg, E., Fradkin, E., Kivelson, S.A., Tranquada, J.M.: Striped superconductors: how the cuprates intertwine spin, charge and superconducting orders. New J. Phys. 11, 115004 (2009)

    ADS  Google Scholar 

  110. Read, N., Sachdev, S.: Valence-bond and Spin-Peierls ground states in low-dimensional quantum antiferromagnets. Phys. Rev. Lett. 62, 1694 (1989)

    ADS  Google Scholar 

  111. Vojta, M., Sachdev, S.: Charge order, superconductivity, and a global phase diagram of doped antiferromagnets. Phys. Rev. Lett. 83, 3916 (1999)

    ADS  Google Scholar 

  112. Vojta, M., Zhang, Y., Sachdev, S.: Competing orders and quantum criticality in doped antiferromagnets. Phys. Rev. B 62, 6721 (2000)

    ADS  Google Scholar 

  113. Kivelson, S.A., Rokhsar, D., Sethna, J.P.: Topology of the resonating valence-bond state: solitons and high \(T_c\) superconductivity. Phys. Rev. B 35, 865 (1987)

    Google Scholar 

  114. Capello, M., Raczkowski, M., Poilblanc, D.: Stability of RVB hole stripes in high temperature superconductors. Phys. Rev. B 77, 224502 (2008)

    ADS  Google Scholar 

  115. Himeda, A., Kato, T., Ogata, M.: Stripe states with spatially oscillating d-wave superconductivity in the two-dimensional \(t-t^\prime-J\) model. Phys. Rev. Lett. 88, 117001 (2002)

    ADS  Google Scholar 

  116. Yamase, H., Metzner, W.: Competition of Fermi surface symmetry breaking and superconductivity. Phys. Rev. B 75, 155117 (2007)

    ADS  Google Scholar 

  117. White, S.R., Scalapino, D.J.: Ground states of the doped four-leg t-J ladder. Phys. Rev. B 55, 14701 (R) (1997)

    ADS  Google Scholar 

  118. White, S.R., Scalapino, D.J.: Density matrix renormalization group study of the striped phase in the 2D t-J model. Phys. Rev. Lett. 80, 1272 (1998)

    ADS  Google Scholar 

  119. White, S.R., Scalapino, D.J.: Ground-state properties of the doped three-leg t-J ladder. Phys. Rev. B 57, 3031 (1998)

    ADS  Google Scholar 

  120. White, S.R., Scalapino, D.J.: Phase separation and stripe formation in the two-dimensional t-J model: a comparison of numerical results. Phys. Rev. B 61, 6320 (2000)

    ADS  Google Scholar 

  121. Hager, G., Wellein, G., Jackelmann, E., Fehske, H.: Stripe formation in doped Hubbard ladders. Phys. Rev. B 71, 075108 (2005)

    ADS  Google Scholar 

  122. Kivelson, S.A., Emery, V.J., Lin, H.Q.: Doped antiferromagnets in the small t limit. Phys. Rev. B 42, 6523 (1990)

    ADS  Google Scholar 

  123. Emery, V.J.: Theory of high \(T_c\) superconductivity in oxides. Phys. Rev. Lett. 58, 2794 (1987)

    ADS  Google Scholar 

  124. Lorenzana, J., Seibold, G.: Metallic mean-field stripes, incommensurability, and chemical potential in cuprates. Phys. Rev. Lett. 89, 136401 (2002)

    ADS  Google Scholar 

  125. Granath, M., Oganesyan, V., Kivelson, S.A., Fradkin, E., Emery, V.J.: Nodal quasi-particles and coexisting orders in striped superconductors. Phys. Rev. Lett. 87, 167011 (2001)

    ADS  Google Scholar 

  126. Arrigoni, E., Fradkin, E., Kivelson, S.A.: Mechanism of high temperature superconductivity in a striped Hubbard model. Phys. Rev. B. 69, 214519 (2004)

    ADS  Google Scholar 

  127. Emery, V.J.: In: Devreese, J.T., Evrard, R.P., van Doren, V.E. (ed.) Highly Conducting One-Dimensional Solids, p. 327. Plenum Press, New York (1979)

    Google Scholar 

  128. Luther, A., Emery, V.J.: Backward scattering in the one-dimensional electron gas. Phys. Rev. Lett. 33, 589 (1974)

    ADS  Google Scholar 

  129. Noack, R.M., Bulut, N., Scalapino, D.J., Zacher, M.G.: Enhanced \(\hbox{d}_{x^2-y^2}\) pairing correlations in the two-leg Hubbard ladder. Phys. Rev. B 56, 7162 (1997)

    ADS  Google Scholar 

  130. Balents, L., Fisher, M.P.A.: Weak-coupling phase diagram of the two-chain Hubbard model. Phys. Rev. B 53, 12133 (1996)

    ADS  Google Scholar 

  131. Lin, H.H., Balents, L., Fisher, M.P.A.: N-chain Hubbard model in weak coupling. Phys. Rev. B 56, 6569 (1997)

    ADS  Google Scholar 

  132. Lin, H.H., Balents, L., Fisher, M.P.A.: Exact SO(8) symmetry in the weakly-interacting two-leg ladder. Phys. Rev. B 58, 1794 (1998)

    ADS  Google Scholar 

  133. Emery, V.J., Kivelson, S.A., Zachar, O.: Classification and stability of phases of the multicomponent one-dimensional electron gas. Phys. Rev. B 59, 15641 (1999)

    ADS  Google Scholar 

  134. Emery, V.J., Kivelson, S.A., Zachar, O.: Spin-gap proximity effect mechanism of high temperature superconductivity. Phys. Rev. B 56, 6120 (1997)

    ADS  Google Scholar 

  135. Tsunetsugu, H., Troyer, M., Rice, T.M.: Pairing and excitation spectrum in doped t-J ladders. Phys. Rev. B 51, 16456 (1995)

    ADS  Google Scholar 

  136. Vishwanath, A., Carpentier, D.: Two-dimensional anisotropic non-Fermi-liquid phase of coupled luttinger liquids. Phys. Rev. Lett. 86, 676 (2001)

    ADS  Google Scholar 

  137. Fertig, H.A.: Unlocking transition for modulated surfaces and quantum Hall stripes. Phys. Rev. Lett. 82, 3693 (1999)

    ADS  Google Scholar 

  138. Lawler, M.J., Fradkin, E.: Quantum Hall smectics, sliding symmetry and the renormalization group. Phys. Rev. B 70, 165310 (2004)

    ADS  Google Scholar 

  139. O’Hern, C.S., Lubensky, T.C., Toner, J.: Sliding phases in XY-models, crystals, and cationic lipid-DNA complexes. Phys. Rev. Lett. 83, 2746 (1999)

    Google Scholar 

  140. Carlson, E.W., Orgad, D., Kivelson, S.A., Emery, V.J.: Dimensional crossover in quasi one-dimensional and high \(T_c\) superconductors. Phys. Rev. B 62, 3422 (2000)

    ADS  Google Scholar 

  141. Affleck, I., Halperin, B.I.: On a renormalization group approach to dimensional crossover. J. Phys. A.: Math. Gen. 29, 2627 (1996)

    MATH  ADS  Google Scholar 

  142. Lee, P.A., Nagaosa, N., Wen, X.-G.: Doping a mott insulator: physics of high temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006)

    ADS  Google Scholar 

  143. Berg, E., Fradkin, E., Kivelson, S.A.: Theory of the striped superconductor. Phys. Rev. B 79, 064515 (2009)

    ADS  Google Scholar 

  144. Tranquada, J.M., Gu, G.D., Hücker, M., Kang, H.J., Klingerer, R., Li, Q., Wen, J.S., Xu, G.Y., Zimmermann, M.v.: Evidence for unusual superconducting correlations coexisting with stripe order in \(\hbox{La}_{1.875}\hbox{Ba}_{0.125}\hbox{CuO}_4\). Phys. Rev. B 78, 174529 (2008)

    ADS  Google Scholar 

  145. Hücker, M., Zimmermann, M.V., Debessai, M., Schilling, J.S., Tranquada, J.M., Gu, G.D.: Spontaneous symmetry breaking by charge stripes in the high-pressure phase of superconducting \(\hbox{La}_{1.875}\hbox{Ba}_{0.125}\hbox{CuO}_4\). Phys. Rev. Lett. 104, 057004 (2010)

    ADS  Google Scholar 

  146. Raczkowski, M., Capello, M., Poilblanc, D., Frésard, R., Oleś, A.M.: Unidirectional d-wave superconducting domains in the two-dimensional t-J model. Phys. Rev. B 76, 140505 (R) (2007)

    ADS  Google Scholar 

  147. Yang, K.-Y., Chen, W.-Q., Rice, T.M., Sigrist, M., Zhang, F.-C.: Nature of stripes in the generalized t-J model applied to the cuprate superconductors. New J. Phys. 11, 055053 (2009)

    ADS  Google Scholar 

  148. Loder, F., Kampf, A.P., Kopp, T.: Superconductivity with finite-momentum pairing in zero magnetic field. Phys. Rev. B 81, 020511 (2010)

    ADS  Google Scholar 

  149. Chen, H.D., Vafek, O., Yazdani, A., Zhang, S.-C.: Pair density wave in the pseudogap state of high temperature superconductors. Phys. Rev. Lett. 93, 187002 (2004)

    ADS  Google Scholar 

  150. Melikyan, A., Tešanović, Z.: A model of phase fluctuations in a lattice d-wave superconductor: application to the Cooper pair charge-density-wave in underdoped cuprates. Phys. Rev. B 71, 214511 (2005)

    ADS  Google Scholar 

  151. Kosterlitz, J.M., Thouless, D.J.: Order metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6, 1181 (1973)

    ADS  Google Scholar 

  152. José, J.V., Kadanoff, L.P., Kirkpatrick, S., Nelson, D.R.: Renormalization, vortices, and symmetry-breaking perturbations in the wto-dimensional planar model. Phys. Rev. B 16, 1217 (1977)

    ADS  Google Scholar 

  153. Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge, UK (1996) Chapter 8

    Google Scholar 

  154. Krüger, F., Scheidl, S.: Non-universal ordering of spin and charge in stripe phases. Phys. Rev. Lett. 89, 095701 (2002)

    ADS  Google Scholar 

  155. Podolsky, D., Chandrasekharan, S., Vishwanath, A.: Phase transitions of S  =  1 spinor condensates in an optical lattice. Phys. Rev. B 80, 214513 (2009)

    ADS  Google Scholar 

  156. Radzihovsky, L., Vishwanath, A.: Quantum liquid crystals in imbalanced Fermi gas: fluctuations and fractional vortices in Larkin-Ovchinnikov states. Phys. Rev. Lett. 103, 010404 (2009)

    ADS  Google Scholar 

  157. Baym, G., Pethick, C.: Landau Fermi Liquid Theory. Wiley , New York, NY (1991)

    Google Scholar 

  158. Polchinski, J.: In: Harvey, J., Polchinski, J. (ed.) Recent directions in particle theory: from superstrings and black holes to the Standard Model (TASI - 92). Theoretical Advanced Study Institute in High Elementary Particle Physics (TASI 92), Boulder, Colorado, USA, 1–26 Jun, 1992. (World Scientific, Singapore, 1993).

    Google Scholar 

  159. Shankar, R.: Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66, 129 (1994)

    ADS  MathSciNet  Google Scholar 

  160. Pomeranchuk, I.I.: On the stability of a Fermi liquid. Sov. Phys. JETP 8, 361 (1958)

    MATH  Google Scholar 

  161. Kee, H.-Y., Kim, E.H., Chung, C.-H.: Signatures of an electronic nematic phase at the isotropic-nematic phase transition. Phys. Rev. B 68, 245109 (2003)

    ADS  Google Scholar 

  162. Khavkine, I., Chung, C.-H., Oganesyan, V., Kee, H.-Y.: Formation of an electronic nematic phase in interacting fermion systems. Phys. Rev. B 70, 155110 (2004)

    ADS  Google Scholar 

  163. Yamase, H., Oganesyan, V., Metzner, W.: Mean-field theory for symmetry-breaking Fermi surface deformations on a square lattice. Phys. Rev. B 72, 035114 (2005)

    ADS  Google Scholar 

  164. Halboth, C.J., Metzner, W.: D-wave superconductivity and pomeranchuk instability in the two-dimensional Hubbard model. Phys. Rev. Lett. 85, 5162 (2000)

    ADS  Google Scholar 

  165. Metzner, W., Rohe, D., Andergassen, S.: Soft Fermi surfaces and breakdown of Fermi-liquid behavior. Phys. Rev. Lett. 91, 066402 (2003)

    ADS  Google Scholar 

  166. Neumayr, A., Metzner, W.: Renormalized perturbation theory for Fermi systems: Fermi surface deformation and superconductivity in the two-dimensional Hubbard model. Phys. Rev. B 67, 035112 (2003)

    ADS  Google Scholar 

  167. Dell’Anna, L., Metzner, W.: Fermi surface fluctuations and single electron excitations near pomeranchuk instability in two dimensions. Phys. Rev. B 73, 45127 (2006)

    Google Scholar 

  168. Honerkamp, C., Salmhofer, M., Furukawa, N., Rice, T.M.: Breakdown of the Landau-Fermi liquid in two dimensions due to umklapp scattering. Phys. Rev. B 63, 035109 (2001)

    ADS  Google Scholar 

  169. Honerkamp, C., Salmhofer, M., Rice, T.M.: Flow to strong coupling in the two-dimensional Hubbard model. Euro. Phys. J. B 27, 127 (2002)

    ADS  Google Scholar 

  170. Hankevych, V., Grote, I., Wegner, F.: Pomeranchuk and other instabilities in the t-t’ Hubbard model at the van hove filling. Phys. Rev. B 66, 094516 (2002)

    ADS  Google Scholar 

  171. Lamas, C.A., Cabra, D.C., Grandi, N.: Fermi liquid instabilities in two-dimensional lattice models. Phys. Rev. B 78, 115104 (2008)

    ADS  Google Scholar 

  172. Quintanilla, J., Haque, M., Schofield, A.J.: Symmetry-breaking Fermi surface deformations from central interactions in two dimensions. Phys. Rev. B 78, 035131 (2008)

    ADS  Google Scholar 

  173. Sun, K., Yao, H., Fradkin, E., Kivelson, S.A.: Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi systems with a quadratic band crossing. Phys. Rev. Lett. 103, 046811 (2009)

    ADS  Google Scholar 

  174. Yamase, H., Kohno, H.: Possible quasi-one-dimensional Fermi surface in \(\hbox{La}_{2-x}\hbox{Sr}_{x}\hbox{CuO}_4\). J. Phys. Soc. Jpn. 69, 2151 (2000)

    ADS  Google Scholar 

  175. Miyanaga, A., Yamase, H.: Orientational symmetry-breaking correlations in square lattice t-J model. Phys. Rev. B 73, 174513 (2006)

    ADS  Google Scholar 

  176. Kivelson, S.A., Fradkin, E., Geballe, T.H.: Quasi-1D dynamics and the Nematic phase of the 2D emery model. Phys. Rev. B 69, 144505 (2004)

    ADS  Google Scholar 

  177. Lawler, M.J., Barci, D.G., Fernández, V., Fradkin, E., Oxman, L.: Nonperturbative behavior of the quantum phase transition to a nematic Fermi fluid. Phys. Rev. B 73, 085101 (2006)

    ADS  Google Scholar 

  178. Lawler, M.J., Fradkin, E.: Local quantum criticality in the nematic quantum phase transition of a Fermi fluid. Phys. Rev. B 75, 033304 (2007)

    ADS  Google Scholar 

  179. Metlitski, M.A., Sachdev, S.: Quantum phase transitions of metals in two spatial dimensions:I. Ising-nematic order. Phys. Rev. B 82, 075127 (2010)

    ADS  Google Scholar 

  180. Kee, H.Y., Kim, Y.B.: Itinerant metamagnetism induced by electronic nematic order. Phys. Rev. B 71, 184402 (2005)

    ADS  Google Scholar 

  181. Yamase, H., Katanin, A.A.: Van Hove singularity and spontaneous Fermi surface symmetry breaking in \(\hbox{Sr}_3\hbox{Ru}_2\hbox{O}_7\). J. Phys. Soc. Jpn. 76, 073706 (2007)

    ADS  Google Scholar 

  182. Puetter, C.M., Doh, H., Kee, H.-Y.: Meta-nematic transitions in a bilayer system: application to the bilayer ruthenate. Phys. Rev. B 76, 235112 (2007)

    ADS  Google Scholar 

  183. Puetter, C.M., Rau, J.G., Kee, H.-Y.: Microscopic route to nematicity in \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\). Phys. Rev. B 81, 081105 (2010)

    ADS  Google Scholar 

  184. Raghu, S., Paramekanti, A., Kim, E.-A., Borzi, R.A., Grigera, S., Mackenzie, A.P., Kivelson, S.A.: Microscopic theory of the nematic phase in \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\). Phys. Rev. B 79, 214402 (2009)

    ADS  Google Scholar 

  185. Lee, W.C., Wu, C.: Nematic electron states enhanced by orbital band hybridization. Phys. Rev. B 80, 104438 (2009)

    ADS  Google Scholar 

  186. Fregoso, B.M., Sun, K., Fradkin, E., Lev, B.L.: Biaxial nematic phases in ultracold dipolar Fermi gases. New J. Phys. 11, 103003 (2009)

    ADS  Google Scholar 

  187. Fregoso, B.M., Fradkin, E.: Ferro-Nematic ground state of the dilute dipolar Fermi gas. Phys. Rev. Lett. 103, 205301 (2009)

    Google Scholar 

  188. Kim, E.A., Lawler, M.J., Oreto, P., Sachdev, S., Fradkin, E., Kivelson, S.A.: Theory of the nodal nematic quantum phase transition in superconductors. Phys. Rev. B 77, 184514 (2008)

    ADS  Google Scholar 

  189. Huh, Y., Sachdev, S.: Renormalization group theory of nematic ordering in d-wave superconductors. Phys. Rev. B 78, 064512 (2008)

    ADS  Google Scholar 

  190. Varma, C.M.: Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 4554 (1997)

    Google Scholar 

  191. Barci, D.G., Oxman, L.E.: Strongly correlated fermions with nonlinear energy dispersion and spontaneous generation of anisotropic phases. Phys. Rev. B 67, 205108 (2003)

    ADS  Google Scholar 

  192. Zacharias, M., Wölfle, P., Garst, M.: Multiscale quantum criticality: Pomeranchuk instability in isotropic metals. Phys. Rev. B 80, 165116 (2009)

    ADS  Google Scholar 

  193. Hertz, J.A.: Quantum critical phenomena. Phys. Rev. B 14, 1165 (1976)

    ADS  Google Scholar 

  194. Millis, A.J.: Effect of a nonzero temperature on quantum critical points in itinerant Fermion systems. Phys. Rev. B 48, 7183 (1993)

    ADS  Google Scholar 

  195. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge, UK (1999)

    Google Scholar 

  196. Jain, J.K.: Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199 (1989)

    ADS  Google Scholar 

  197. Lopez, A., Fradkin, E.: Fractional quantum Hall effect and Chern-Simons gauge theories. Phys. Rev. B 44, 5246 (1991)

    ADS  Google Scholar 

  198. Halperin, B.I., Lee, P.A., Read, N.: Theory of the half-filled Landau level. Phys. Rev. B 47, 7312 (1993)

    ADS  Google Scholar 

  199. Rezayi, E., Read, N.: Fermi-liquid-like state in a half-filled Landau level. Phys. Rev. Lett. 72, 900 (1994)

    ADS  Google Scholar 

  200. Doan, Q.M., Manousakis, E.: Variational Monte Carlo calculation of the nematic state of the two-dimensional electron gas in a magnetic field. Phys. Rev. B 78, 075314 (2008)

    ADS  Google Scholar 

  201. Dell’Anna, L., Metzner, W.: Electrical resistivity near pomeranchuk instability in two dimensions. Phys. Rev. Lett. 98, 136402 (2007). Erratum: Phys. Rev. Lett. 103, 220602 (2009)

    Google Scholar 

  202. Haldane, F.D.M.: In: Schrieffer, J.R., Broglia, R. (ed.) Proceedings of the International School of Physics Enrico Fermi, course 121, Varenna, 1992. North-Holland, New York (1994)

    Google Scholar 

  203. Castro Neto, A.H., Fradkin, E.: Bosonization of the low energy excitations of Fermi liquids. Phys. Rev. Lett. 72, 1393 (1994)

    Google Scholar 

  204. Castro Neto, A.H., Fradkin, E.H.: Exact solution of the Landau fixed point via bosonization. Phys. Rev. B 51, 4084 (1995)

    ADS  Google Scholar 

  205. Houghton, A., Marston, J.B.: Bosonization and fermion liquids in dimensions greater than one. Phys. Rev. B 48, 7790 (1993)

    ADS  Google Scholar 

  206. Houghton, A., Kwon, H.J., Marston, J.B.: Multidimensional bosonization. Adv. Phys. 49, 141 (2000)

    ADS  Google Scholar 

  207. Ghaemi, P., Vishwanath, A., Senthil, T.: Finite temperature properties of quantum Lifshitz transitions between valence-bond solid phases: an example of local quantum criticality. Phys. Rev. B 72, 024420 (2005)

    ADS  Google Scholar 

  208. Chubukov, A.V., Pépin, C., Rech, J.: Instability of the quantum critical point of itinerant ferromagnets. Phys. Rev. Lett. 92, 147003 (2004)

    ADS  Google Scholar 

  209. Chubukov, A.V.: Self-generated locality near a ferromagnetic quantum critical point. Phys. Rev. B 71, 245123 (2005)

    ADS  Google Scholar 

  210. Rech, J., Pépin, C., Chubukov, A.V.: Quantum critical behavior in itinerant electron systems–Eliashberg theory and instability of a ferromagnetic quantum critical point. Phys. Rev. B 74, 195126 (2006)

    ADS  Google Scholar 

  211. Holstein, T., Norton, R.E., Pincus, P.: de Haas-van Alphen effect and the specific heat of an electron gas. Phys. Rev. B 8, 2649 (1973)

    ADS  Google Scholar 

  212. Baym, G., Monien, H., Pethick, C.J., Ravenhall, D.G.: Transverse interactions and transport in relativistic quark-gluon and electromagnetic plasmas. Phys. Rev. Lett. 64, 1867 (1990)

    ADS  Google Scholar 

  213. Boyanovsky, D., de Vega, H.J.: Non-Fermi-liquid aspects of cold and dense QED and QCD: equilibrium and non-equilibrium. Phys. Rev. D 63, 034016 (2001)

    ADS  Google Scholar 

  214. Reizer, M.Y.: Relativistic effects in the electron density of states, specific heat, and the electron spectrum of normal metals. Phys. Rev. B 40, 11571 (1989)

    ADS  Google Scholar 

  215. Ioffe, L.B., Wiegmann, P.B.: Linear temperature dependence of resistivity as evidence of gauge interaction. Phys. Rev. Lett. 65, 653 (1990)

    ADS  Google Scholar 

  216. Nagaosa, N., Lee, P.A.: Experimental consequences of the uniform resonating-valence-bond state. Phys. Rev. B 43, 1233 (1991)

    ADS  Google Scholar 

  217. Polchinski, J.: Low-energy dynamics of the spinon-gauge system. Nucl. Phys. B 422, 617 (1994)

    ADS  MathSciNet  Google Scholar 

  218. Chakravarty, S., Norton, R.E., Syljuasen, O.F.: Transverse gauge interactions and the vanquished Frmi liquid. Phys. Rev. Lett. 74, 1423 (1995)

    ADS  Google Scholar 

  219. Lee, S.S.: Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2 + 1 dimensions. Phys. Rev. B 80, 165102 (2009)

    ADS  Google Scholar 

  220. Jakubczyk, P., Metzner, W., Yamase, H.: Turning a first order quantum phase transition continuous by fluctuations. Phys. Rev. Lett. 103, 220602 (2009)

    ADS  Google Scholar 

  221. Hirsch, J.E.: Spin-split states in metals. Phys. Rev. B 41, 6820 (1990)

    ADS  Google Scholar 

  222. Varma, C.M., Zhu, L.: Helicity order: hidden order parameter in \(\hbox{URu}_2\hbox{Si}_2\). Phys. Rev. Lett. 96, 036405 (2006)

    ADS  Google Scholar 

  223. Simon, M.E., Varma, C.M.: Detection and implications of a time-reversal breaking state in underdoped cuprates. Phys. Rev. Lett. 89, 247003 (2002)

    ADS  Google Scholar 

  224. Haldane, F.D.M.: Berry Curvature on the Fermi surface: anomalous Hall effect as a topological Fermi-liquid property. Phys. Rev. Lett. 93, 206602 (2004)

    ADS  Google Scholar 

  225. Nelson, D.R., Toner, J.: Bond-orientational order, dislocation loops, and melting of solids and smectic-A liquid crystals. Phys. Rev. B 24, 363 (1981)

    ADS  MathSciNet  Google Scholar 

  226. Toner, J., Nelson, D.R.: Smectic, cholesteric, and Rayleigh-Benard order in two dimensions. Phys. Rev. B 23, 316 (1981)

    ADS  MathSciNet  Google Scholar 

  227. Zaanen, J., Nussinov, Z., Mukhin, S.I.: Duality in 2 + 1 D quantum elasticity: superconductivity and quantum nematic order. Ann. Phys. 310, 181 (2004)

    MATH  ADS  Google Scholar 

  228. Cvetkovic, V., Nussinov, Z., Zaanen, J.: Topological kinematical constraints: quantum dislocations and glide principle. Phil. Mag. 86, 2995 (2006)

    ADS  Google Scholar 

  229. Sun, K., Fregoso B.M., Lawler M.J., Fradkin E.: Fluctuating stripes in strongly correlated electron systems and the nematic-smectic quantum phase transition. Phys. Rev. B 78, 085124 (2008). Erratum: Phys. Rev. B 80, 039901(E) (2008).

    Google Scholar 

  230. Kirkpatrick, T.R., Belitz, D.: Soft modes in electronic stripe phases and their consequences for thermodynamics and transport Phys. Rev. B 80, 075121 (2009)

    Google Scholar 

  231. Millis, A.J.: Fluctuation-driven first order behavior near the T = 0 two dimensional stripe to Fermi liquid transition. Phys. Rev. B 81, 035117 (2010)

    ADS  Google Scholar 

  232. Halperin, B.I., Lubensky, T.C., Ma, S.-K.: First-order phase transitions in superconductors and smectic—a liquid crystals. Phys. Rev. Lett. 32, 292 (1974)

    ADS  Google Scholar 

  233. Altshuler, B.L., Ioffe, L.B., Millis, A.J.: Critical behavior of the T = 0, 2 \(k_{F},\) density-wave phase transition in a two-dimensional Fermi liquid. Phys. Rev. B 52, 5563 (1995)

    ADS  Google Scholar 

Download references

Acknowledgments

I am deeply indebted to Steve Kivelson with whom we developed many of the ideas that are presented here. Many of these results were obtained also in collaboration with my former students Michael Lawler and Kai Sun, as well as to John Tranquada, Vadim Oganesyan, Erez Berg, Daniel Barci, Congjun Wu, Benjamin Fregoso, Siddhartha Lal and Akbar Jaefari, and many other collaborators. I would like to thank Daniel Cabra, Andreas Honecker and Pierre Pujol for inviting me to this very stimulating Les Houches Summer School on “Modern theories of correlated electron systems” (Les Houches, May 2009). This work was supported in part by the National Science Foundation, under grant DMR 0758462 at the University of Illinois, and by the Office of Science, U.S. Department of Energy, under Contracts DE-FG02-91ER45439 and DE-FG02-07ER46453 through the Frederick Seitz Materials Research Laboratory of the University of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Fradkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fradkin, E. (2012). Electronic Liquid Crystal Phases in Strongly Correlated Systems. In: Cabra, D., Honecker, A., Pujol, P. (eds) Modern Theories of Many-Particle Systems in Condensed Matter Physics. Lecture Notes in Physics, vol 843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10449-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10449-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10448-0

  • Online ISBN: 978-3-642-10449-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics