Skip to main content

Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors

  • Chapter
  • First Online:
Modern Theories of Many-Particle Systems in Condensed Matter Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 843))

Abstract

I begin with a proposed global phase diagram of the cuprate superconductors as a function of carrier concentration, magnetic field, and temperature, and highlight its connection to numerous recent experiments. The phase diagram is then used as a point of departure for a pedagogical review of various quantum phases and phase transitions of insulators, superconductors, and metals. The bond operator method is used to describe the transition of dimerized antiferromagnetic insulators between magnetically ordered states and spin-gap states. The Schwinger boson method is applied to frustrated square lattice antiferromagnets: phase diagrams containing collinear and spirally ordered magnetic states, \(Z_2\) spin liquids, and valence bond solids are presented, and described by an effective gauge theory of spinons. Insights from these theories of insulators are then applied to a variety of symmetry breaking transitions in d-wave superconductors. The latter systems also contain fermionic quasiparticles with a massless Dirac spectrum, and their influence on the order parameter fluctuations and quantum criticality is carefully discussed. I conclude with an introduction to strong coupling problems associated with symmetry breaking transitions in two-dimensional metals, where the order parameter fluctuations couple to a gapless line of fermionic excitations along the Fermi surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bednorz, J.G., Müller, K.A.: Possible high \(T_c\) superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 188 (1986)

    Article  ADS  Google Scholar 

  2. Doiron-Leyraud, N., Proust, C., LeBoeuf, D., Levallois, J., Bonnemaison, J.-B., Liang, R., Bonn, D.A., Hardy, W.N., Taillefer, L.: Quantum oscillations and the Fermi surface in an underdoped high- \(T_c\) superconductor. Nature 447, 565 (2007)

    Article  ADS  Google Scholar 

  3. Moon, E.G., Sachdev, S.: Competition between spin density wave order and superconductivity in the underdoped cuprates. Phys. Rev. B 80, 035117 (2009)

    Article  ADS  Google Scholar 

  4. Sachdev, S.: Where is the quantum critical point in the cuprate superconductors? Phys. status solidi B 247, 537 (2010)

    Article  Google Scholar 

  5. Sachdev, S.: Quantum criticality and the phase diagram of the cuprates, 9th International Conference on Materials and Mechanisms of Superconductivity, Tokyo, Sep 7–12, 2009, Physica C 470, S4 (2010)

    Google Scholar 

  6. Sachdev, S., Chubukov, A.V., Sokol, A.: Crossover and scaling in a nearly antiferromagnetic Fermi liquid in two dimensions. Phys. Rev. B 51, 14874 (1995)

    Article  ADS  Google Scholar 

  7. LeBoeuf, D., Doiron-Leyraud, N., Levallois, J., Daou, R., Bonnemaison, J.-B., Hussey, N.E., Balicas, L., Ramshaw, B.J., Liang, R., Bonn, D.A., Hardy, W.N., Adachi, S., Proust, C., Taillefer, L.: Electron pockets in the Fermi surface of hole-doped high- \(T_c\) superconductors. Nature 450, 533 (2007)

    Article  ADS  Google Scholar 

  8. Sebastian, S.E., Harrison, N., Goddard, P.A., Altarawneh, M.M., Mielke, C.H., Liang, R., Bonn, D.A., Hardy, W.N., Andersen, O.K., Lonzarich, G.G.: Compensated electron and hole pockets in an underdoped high- \(T_c\) superconductor. Phys. Rev. B 81, 214524 (2010)

    Google Scholar 

  9. Daou, R., Doiron-Leyraud, N., LeBoeuf, D., Li, S.Y., Laliberté, F., Cyr-Choinière, O., Jo, Y.J., Balicas, L., Yan, J.-Q., Zhou, J.-S., Goodenough, J.B., Taillefer, L.: Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high- \(T_c\) superconductor. Nat. Phys. 5, 31 (2009)

    Google Scholar 

  10. Daou, R., Chang, J., LeBoeuf, D., Cyr-Choiniere, O., Laliberte, F., Doiron-Leyraud, N., Ramshaw, B.J., Liang, R., Bonn, D.A., Hardy, W.N., Taillefer, L.: Broken rotational symmetry in the pseudogap phase of a high- \(T_c\) superconductor. Nature 463, 519 (2010)

    Google Scholar 

  11. Helm, T., Kartsovnik, M.V., Bartkowiak, M., Bittner, N., Lambacher, M., Erb, A., Wosnitza, J., Gross, R.: Evolution of the Fermi surface of the electron-doped high-temperature superconductor \(Nd_{2-x}Ce_xCuO_4\) revealed by Shubnikov-de Haas oscillations. Phys. Rev. Lett. 103, 157002 (2009)

    Article  ADS  Google Scholar 

  12. Helm, T., Kartsovnik, M.V., Sheikin, I., Bartkowiak, M., Wolff-Fabris, F., Bittner, N., Biberacher, W., Lambacher, M., Erb, A., Wosnitza, J., Gross, R.: Magnetic breakdown in the electron-doped cuprate superconductor \(Nd_{2-x}Ce_xCuO_4\): the reconstructed Fermi surface survives in the strongly overdoped regime. Phys. Rev. Lett. 105, 247002 (2010)

    Article  ADS  Google Scholar 

  13. Sachdev, S., Metlitski, M.A., Qi, Y., Xu, C.: Fluctuating spin density waves in metals. Phys. Rev. B 80, 155129 (2009)

    Article  ADS  Google Scholar 

  14. Scalapino, D.J.: The case for \(d_{x^2-y^2}\) pairing in the cuprate superconductors. Phys. Rep. 250, 329 (1995)

    Article  ADS  Google Scholar 

  15. Abanov, Ar., Chubukov, A.V., Schmalian, J.: Quantum-critical theory of the spin-fermion model and its application to cuprates: normal state analysis. Adv. Phys. 52, 119 (2003)

    Article  ADS  Google Scholar 

  16. Galitski, V., Sachdev, S.: Paired electron pockets in the hole-doped cuprates. Phys. Rev. B 79, 134512 (2009)

    Article  ADS  Google Scholar 

  17. Kato, M., Machida, K.: Superconductivity and spin-density waves: application to heavy-fermion materials. Phys. Rev. B 37, 1510 (1988)

    Article  ADS  Google Scholar 

  18. Demler, E., Sachdev, S., Zhang, Y.: Spin-ordering quantum transitions of superconductors in a magnetic field. Phys. Rev. Lett. 87, 0067202 (2001)

    Article  ADS  Google Scholar 

  19. Zhang, Y., Demler, E., Sachdev, S.: Competing orders in a magnetic field: Spin and charge order in the cuprate superconductors. Phys. Rev. B 66, 094501 (2002)

    Article  ADS  Google Scholar 

  20. Lake, B., Aeppli, G., Clausen, K.N., McMorrow, D.F., Lefmann, K., Hussey, N.E., Mangkorntong, N., Nohara, M., Takagi, H., Mason, T.E., Schröder, A.: Spins in the vortices of a high-temperature superconductor. Science 291, 1759 (2001)

    Article  ADS  Google Scholar 

  21. Lake, B., Rønnow, H.M., Christensen, N.B., Aeppli, G., Lefmann, K., McMorrow, D.F., Vorderwisch, P., Smeibidl, P., Mangkorntong, N., Sasagawa, T., Nohara, M., Takagi, H., Mason, T.E.: Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor. Nature 415, 299 (2002)

    Article  ADS  Google Scholar 

  22. Khaykovich, B., Wakimoto, S., Birgeneau, R.J., Kastner, M.A., Lee, Y.S., Smeibidl, P., Vorderwisch, P., Yamada, K.: Field-induced transition between magnetically disordered and ordered phases in underdoped \(La_{2-x}Sr_xCuO_4\). Phys. Rev. B 71, 220508 (2005)

    Article  ADS  Google Scholar 

  23. Chang, J., Niedermayer, Ch., Gilardi, R., Christensen, N.B., Rønnow, H.M., McMorrow, D.F., Ay, M., Stahn, J., Sobolev, O., Hiess, A., Pailhes, S., Baines, C., Momono, N., Oda, M., Ido, M., Mesot, J.: Tuning competing orders in \(La_{2-x}Sr_xCuO_4\) cuprate superconductors by the application of an external magnetic field. Phys. Rev. B 78, 104525 (2008)

    Article  ADS  Google Scholar 

  24. Chang, J., Christensen, N.B., Niedermayer, Ch., Lefmann, K., Rønnow, H.M., McMorrow, D.F., Schneidewind, A., Link, P., Hiess, A., Boehm, M., Mottl, R., Pailhes, S., Momono, N., Oda, M., Ido, M., Mesot, J.: Magnetic-field-induced soft-mode quantum phase transition in the high-temperature superconductor \(La_{1.855}Sr_{0.145}CuO_{4}\): an inelastic neutron-scattering study. Phys. Rev. Lett. 102, 177006 (2009)

    Article  ADS  Google Scholar 

  25. Haug, D., Hinkov, V., Suchaneck, A., Inosov, D.S., Christensen, N.B., Niedermayer, Ch., Bourges, P., Sidis, Y., Park, J.T., Ivanov, A., Lin, C.T., Mesot, J., Keimer, B.: Magnetic-field-enhanced incommensurate magnetic order in the underdoped high-temperature superconductor \(YBa_{2}Cu_{3}O_{6.45}\). Phys. Rev. Lett. 103, 017001 (2009)

    Google Scholar 

  26. Motoyama, E.M., Yu, G., Vishik, I.M., Vajk, O.P., Mang, P.K., Greven, M.: Spin correlations in the electron-doped high-transition-temperature superconductor \(Nd_{2-x}Ce_{x}CuO_{4\pm\delta}\). Nature 445, 186 (2007)

    Article  ADS  Google Scholar 

  27. Kaul, R.K., Metlitski, M.A., Sachdev, S., Xu, C.: Destruction of Néel order in the cuprates by electron doping. Phys. Rev. B 78, 045110 (2008)

    Article  ADS  Google Scholar 

  28. Qi, Y., Sachdev, S.: Effective theory of Fermi pockets in fluctuating antiferromagnets. Phys. Rev. B 81, 115129 (2010)

    Google Scholar 

  29. Moon, E.G., Sachdev, S.: Underdoped cuprates as fractionalized Fermi liquids: Transition to superconductivity. Phys. Rev. B 83, 224508 (2011)

    Google Scholar 

  30. Kohsaka, Y., Taylor, C., Fujita, K., Schmidt, A., Lupien, C., Hanaguri, T., Azuma, M., Takano, M., Eisaki, H., Takagi, H., Uchida, S., Davis, J.C.: An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380 (2007)

    Article  ADS  Google Scholar 

  31. Ando, Y., Segawa, K., Komiya, S., Lavrov, A.N.: Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002)

    Article  ADS  Google Scholar 

  32. Hinkov, V., Haug, D., Fauqué, B., Bourges, P., Sidis, Y., Ivanov, A., Bernhard, C., Lin, C.T., Keimer, B.: Electronic liquid crystal state in the high-temperature superconductor \(YBa_{2}Cu_{3}O_{6.45}\). Science 319, 597 (2008)

    Article  Google Scholar 

  33. Knebel, G., Aoki, D., Flouquet, J.: Magnetism and superconductivity in \(CeRhIn_5\) arXiv:0911.5223

    Google Scholar 

  34. Ni, N., Tillman, M.E., Yan, J.-Q., Kracher, A., Hannahs, S.T., Bud’ko, S.L., Canfield, P.C.: Effects of Co substitution on thermodynamic and transport properties and anisotropic \(\user2{H}_{c2}\) in \(Ba(Fe_{1-x}C_{x})_{2}As_2\) single crystals. Phys. Rev. B 78, 214515 (2008)

    Article  ADS  Google Scholar 

  35. Nandi, S., Kim, M.G., Kreyssig, A., Fernandes, R.M., Pratt, D.K., Thaler, A., Ni, N., Bud’ko, S.L., Canfield, P.C., Schmalian, J., McQueeney, R.J., Goldman, A.I.: Anomalous suppression of the orthorhombic lattice distortion in superconducting \(Ba(Fe_{1-x}Co_{x})_{2}As_{2}\) single crystals. Phys. Rev. Lett. 104, 057006 (2010)

    Article  ADS  Google Scholar 

  36. Fernandes, R.M., Pratt, D.K., Tian, W., Zarestky, J., Kreyssig, A., Nandi, S., Kim, M.G., Thaler, A., Ni, N., Bud’ko, S.L., Canfield, P.C., McQueeney, R.J., Schmalian, J., Goldman, A.I.: Unconventional pairing in the iron arsenide superconductors. Phys. Rev. B 81, 140501(R) (2010)

    Article  ADS  Google Scholar 

  37. Scalapino, D.J.: A common thread. Phys. C 470, S1 (2010)

    Article  ADS  Google Scholar 

  38. Sachdev, S.: Quantum antiferromagnets in two dimensions. In: Lu, Y., Lundqvist, S., Morandi, G. (eds) Low Dimensional Quantum Field Theories for Condensed Matter Physicists, World Scientific, Singapore (1995) cond-mat/9303014

    Google Scholar 

  39. Sachdev, S.: Quantum phases and phase transitions of Mott insulators in quantum magnetism. In: Schollwöck, U., Richter, J., Farnell, D.J.J., Bishop, R.F. (eds) Lecture Notes in Physics, Springer, Berlin (2004) cond-mat/0401041

    Google Scholar 

  40. Sachdev, S.: Quantum phase transitions of correlated electrons in two dimensions, Lectures at the international summer school on fundamental problems in statistical physics X, Phys. A, vol. 313, pp. 252. Altenberg, Germany (2002), Aug–Sept 2001, cond-mat/0109419

    Google Scholar 

  41. Sachdev, S.: Exotic phases and quantum phase transitions: model systems and experiments, 24th Solvay Conference on Physics, Quantum Theory of Condensed Matter, Brussels, 11–13 Oct 2008, arXiv:0901.4103

    Google Scholar 

  42. Gelfand, M.P., Singh, R.R.P., Huse, D.A.: Zero-temperature ordering in two-dimensional frustrated quantum Heisenberg antiferromagnets. Phys. Rev. B 40, 10801 (1989)

    Article  ADS  Google Scholar 

  43. Oosawa, A., Fujisawa, M., Osakabe, T., Kakurai, K., Tanaka, H.: Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system \(TlCuCl_3\). J. Phys. Soc. Jpn. 72, 1026 (2003)

    Article  ADS  Google Scholar 

  44. Rüegg, Ch., Cavadini, N., Furrer, A., Güdel, H.-U., Krämer, K., Mutka, H., Wildes, A., Habicht, K., Vorderwisch, P.: Bose-Einstein condensation of the triplet states in the magnetic insulator \(TlCuCl_3\). Nature 423, 62 (2003)

    Article  ADS  Google Scholar 

  45. Rüegg, Ch., Normand, B., Matsumoto, M., Furrer, A., McMorrow, D.F., Krämer, K.W., Güdel, H.-U., Gvasaliya, S.N., Mutka, H., Boehm, M.: Quantum magnets under pressure: controlling elementary excitations in \(TlCuCl_3\). Phys. Rev. Lett. 100, 205701 (2008)

    Article  ADS  Google Scholar 

  46. Callaway, J.: Quantum Theory of the Solid State. Academic Press, New York (1974)

    Google Scholar 

  47. Matsumoto, M., Yasuda, C., Todo, S., Takayama, H.: Ground-state phase diagram of quantum Heisenberg antiferromagnets on the anisotropic dimerized square lattice. Phys. Rev. B 65, 014407 (2002)

    Article  ADS  Google Scholar 

  48. Sachdev, S., Bhatt, R.N.: Bond-operator representation of quantum spins: mean-field theory of frustrated quantum Heisenberg antiferromagnets. Phys. Rev. B 41, 9323 (1990)

    Article  ADS  Google Scholar 

  49. Chubukov, A.V., Jolicoeur, Th.: Dimer stability region in a frustrated quantum Heisenberg antiferromagnet. Phys. Rev. B 44, 12050 (1991)

    Article  ADS  Google Scholar 

  50. Sommer, T., Vojta, M., Becker, K.W.: Magnetic properties and spin waves of bilayer magnets in a uniform field. Eur. Phys. J. B 23, 329 (2001)

    Article  ADS  Google Scholar 

  51. Normand, B., Rice, T.M.: Dynamical properties of an antiferromagnet near the quantum critical point: application to \(LaCuO_{2.5}{.}\)   Phys. Rev. B 56, 8760 (1997)

    Google Scholar 

  52. Sachdev, S.: Theory of finite-temperature crossovers near quantum critical points close to,or above, their upper-critical dimension. Phys. Rev. B 55, 142 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  53. Carpentier, D., Balents, L.: Field theory for generalized shastry-sutherland models. Phys. Rev. B 65, 024427 (2002)

    Article  ADS  Google Scholar 

  54. Calabrese, P., Parruccini, P., Pelissetto, A., Vicari, E.: Critical behavior of \(O(2){\otimes} O(N)\) symmetric models. Phys. Rev. B 70, 174439 (2004)

    Article  ADS  Google Scholar 

  55. Read, N., Sachdev, S.: Large-N expansion for frustrated quantum antiferromagnets. Phys. Rev. Lett. 66, 1773 (1991)

    Article  ADS  Google Scholar 

  56. Wen, X.G.: Mean-field theory of spin-liquid states with finite energy gap and topological orders. Phys. Rev. B 44, 2664 (1991)

    Article  ADS  Google Scholar 

  57. Sachdev, S.: Kagomé- and triangular-lattice Heisenberg antiferromagnets: ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. Phys. Rev. B 45, 12377 (1992)

    Article  ADS  Google Scholar 

  58. Wang, F., Vishwanath, A.: Spin-liquid states on the triangular and Kagomé lattices: a projective-symmetry-group analysis of Schwinger boson states. Phys. Rev. B 74, 174423 (2006)

    Article  ADS  Google Scholar 

  59. Arovas, D.P., Auerbach, A.: Functional integral theories of low-dimensional quantum Heisenberg models. Phys. Rev. B 38, 316 (1988)

    Article  ADS  Google Scholar 

  60. Arovas, D.P., Auerbach, A.: Spin dynamics in the square-lattice antiferromagnet. Phys. Rev. Lett. 61, 617 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  61. Read, N., Sachdev, S.: Some features of the phase diagram of the square lattice SU(N) antiferromagnet. Nucl. Phys. B 316, 609 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  62. Read, N., Sachdev, S.: Valence-bond and spin-peierls ground states of low-dimensional quantum antiferromagnets. Phys. Rev. Lett. 62, 1694 (1989)

    Article  ADS  Google Scholar 

  63. Read, N., Sachdev, S.: Spin-peierls, valence-bond solid, and Néel ground states of low-dimensional quantum antiferromagnets. Phys. Rev. B 42, 4568 (1990)

    Article  ADS  Google Scholar 

  64. Sachdev, S., Read, N.: Large N expansion for frustrated and doped quantum antiferromagnets. Int. J. Mod. Phys. B 5, 219 (1991) cond-mat/0402109

    Article  ADS  Google Scholar 

  65. Affleck, I.: The quantum Hall effects, \(\sigma\)-models at \(\Uptheta=\pi\) and quantum spin chains. Nucl. Phys. B 257, 397 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  66. Affleck, I.: Exact critical exponents for quantum spin chains, non-linear \(\sigma\)-models at \(\theta=\pi\) and the quantum Hall effect. Nucl. Phys. B 265, 409 (1985)

    Google Scholar 

  67. Einarsson, T., Johannesson, H.: Effective-action approach to the frustrated Heisenberg antiferromagnet in two dimensions. Phys. Rev. B 43, 5867 (1991)

    Article  ADS  Google Scholar 

  68. Einarsson, T., Frojdh, P., Johannesson, H.: Weakly frustrated spin-1/2 Heisenberg antiferromagnet in two dimensions: thermodynamic parameters and the stability of the Néel state. Phys. Rev. 45, 13121 (1992)

    Article  Google Scholar 

  69. Chandra, P., Coleman, P., Larkin, A.I.: Ising transition in frustrated Heisenberg models. Phys. Rev. Lett. 64, 88 (1990)

    Article  ADS  Google Scholar 

  70. Chandra, P., Coleman, P.: Twisted magnets and twisted superfluids. Int. J. Mod. Phys. B 3, 1729 (1989)

    Article  ADS  Google Scholar 

  71. Halperin, B.I., Saslow, W.M.: Hydrodynamic theory of spin waves in spin glasses and other systems with noncollinear spin orientations. Phys. Rev. B 16, 2154 (1977)

    Article  ADS  Google Scholar 

  72. Dombre, T., Read, N.: Nonlinear \(\sigma\) models for triangular quantum antiferromagnets. Phys. Rev. B 39, 6797 (1989)

    Article  ADS  Google Scholar 

  73. Azaria, P., Delamotte, B., Jolicoeur, T.: Nonuniversality in helical and canted-spin systems. Phys. Rev. Lett. 64, 3175 (1990)

    Article  ADS  Google Scholar 

  74. Affleck, I., Marston, J.B.: Large-n limit of the Heisenberg–Hubbard model: implications for high- \(T_c\) superconductors. Phys. Rev. B 37, 3774 (1988)

    Article  ADS  Google Scholar 

  75. Rokhsar, D., Kivelson, S.: Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett. 61, 2376 (1988)

    Article  ADS  Google Scholar 

  76. Henley, C.: Ordering due to disorder in a frustrated vector antiferromagnet. Phys. Rev. Lett. 62, 2056 (1989)

    Article  ADS  Google Scholar 

  77. Chubukov, A.: First-order transition in frustrated quantum antiferromagnets. Phys. Rev. B 44, 392 (1991)

    Article  ADS  Google Scholar 

  78. Mila, F., Poilbanc, D., Bruder, C.: Spin dynamics in a frustrated magnet with short-range order. Phys. Rev. B 43, 7891 (1991)

    Article  ADS  Google Scholar 

  79. Stephenson, J.: Range of order in antiferromagnets with next-nearest neighbor coupling. Can. J. Phys. 48, 2118–1724 (1970)

    Article  ADS  Google Scholar 

  80. Polyakov, A.M.: Gauge Fields and Strings. Harwood, New York (1987)

    Google Scholar 

  81. Polyakov, A.M.: Quark confinement and topology of gauge theories. Nucl. Phys. B 120, 429 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  82. Senthil, T., Vishwanath, A., Balents, L., Sachdev, S., Fisher, M.P.A.: Deconfined quantum critical points. Science 303, 1490 (2004)

    Article  ADS  Google Scholar 

  83. Senthil, T., Balents, L., Sachdev, S., Vishwanath, A., Fisher, M.P.A.: Quantum criticality beyond the Landau–Ginzburg–Wilson paradigm. Phys. Rev. B 70, 144407 (2004)

    Article  ADS  Google Scholar 

  84. Fradkin, E., Shenker, S.H.: Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D 19, 3682 (1979)

    Article  ADS  Google Scholar 

  85. Senthil, T., Fisher, M.P.A.: \(Z_2\) gauge theory of electron fractionalization in strongly correlated systems. Phys. Rev. B 62, 7850 (2000)

    Article  ADS  Google Scholar 

  86. Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  87. Xu, C., Sachdev, S.: Global phase diagrams of frustrated quantum antiferromagnets in two dimensions: doubled Chern–Simons theory. Phys. Rev. B 79, 064405 (2009)

    Article  ADS  Google Scholar 

  88. Qi, Y., Xu, C., Sachdev, S.: Dynamics and transport of the \(Z_2\) spin liquid: application to \(\kappa-(ET)_{2}Cu_{2}(CN)_{3}\). Phys. Rev. Lett. 102, 176401 (2009)

    Article  ADS  Google Scholar 

  89. Herbut, I.F., Juričič, V., Roy, B.: Theory of interacting electrons on the honeycomb lattice. Phys. Rev. B 79, 085116 (2009)

    Article  ADS  Google Scholar 

  90. Juričič, V., Herbut, I.F., Semenoff, G.W.: Coulomb interaction at the metal-insulator critical point in graphene. Phys. Rev. B 80, 081405(R) (2009)

    ADS  Google Scholar 

  91. De Prato, M., Pelissetto, A., Vicari, E.: Spin-density-wave order in cuprates. Phys. Rev. B 74, 144507 (2006)

    Article  ADS  Google Scholar 

  92. Pelissetto, A., Sachdev, S., Vicari, E.: Nodal quasiparticles and the onset of spin-density-wave order in cuprate superconductors. Phys. Rev. Lett. 101, 027005 (2008)

    Article  ADS  Google Scholar 

  93. Kim, E.-A., Lawler, M.J., Oreto, P., Sachdev, S., Fradkin, E., Kivelson, S.A.: Theory of the nodal nematic quantum phase transition in superconductors. Phys. Rev. B 77, 184514 (2008)

    Article  ADS  Google Scholar 

  94. Vojta, M., Zhang, Y., Sachdev, S.: Quantum phase transitions in d-wave superconductors. Phys. Rev. Lett. 85, 4940 (2000)

    Article  ADS  Google Scholar 

  95. Vojta, M., Zhang, Y., Sachdev, S.: Quantum phase transitions in d-wave superconductors. Phys. Rev. Lett. 100, 089904(E) (2008)

    Article  ADS  Google Scholar 

  96. Vojta, M., Zhang, Y., Sachdev, S.: Renormalization group analysis of quantum critical points in d-wave superconductors. Int. J. Mod. Phys. B 14, 3719 (2000)

    Article  ADS  Google Scholar 

  97. Laughlin, R.B.: Magnetic induction of \(d_{x^2-y^2}+id_{xy}\) order in high- \(T_c\) superconductors. Phys. Rev. Lett. 80, 5188 (1998)

    Article  ADS  Google Scholar 

  98. Li, M.-R., Hirschfeld, P.J., Woelfle, P.: Vortex state of a d-wave superconductor at low temperatures. Phys. Rev. B 63, 054504 (2001)

    Article  ADS  Google Scholar 

  99. Khveshchenko, D.V., Paaske, J.: Incipient nodal pairing in planar d-wave superconductors. Phys. Rev. Lett. 86, 4672 (2001)

    Article  ADS  Google Scholar 

  100. Rosenstein, B., Warr, B.J., Park, S.H.: Dynamical symmetry breaking in four-fermion interaction models. Phys. Rep. 205, 59 (1991)

    Article  ADS  Google Scholar 

  101. Kärkkäinen, L., Lacaze, R., Lacock, P., Petersson, B.: Critical behaviour of the three-dimensional Gross–Neveu and Higgs–Yukawa models. Nucl. Phys. B 415, 781 (1994)

    Article  ADS  Google Scholar 

  102. Huh, Y., Sachdev, S.: Renormalization group theory of nematic ordering in d-wave superconductors. Phys. Rev. B 78, 064512 (2008)

    Article  ADS  Google Scholar 

  103. Fritz, L., Sachdev, S.: Signatures of the nematic ordering transitions in the thermal conductivity of d-wave superconductors. Phys. Rev. B 80, 144503 (2009)

    Article  ADS  Google Scholar 

  104. Metlitksi, M.A., Sachdev, S.: Quantum phase transitions of metals in two spatial dimensions: I. Ising-nematic order. Phys. Rev. B 82, 075127 (2010)

    Article  ADS  Google Scholar 

  105. Metlitski, M.A., Sachdev, S.: Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order. Phys. Rev. B 82, 075128 (2010)

    Article  ADS  Google Scholar 

  106. Löhneysen, H.v., Rosch, A., Vojta, M., Wölfle, P.: Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015 (2007)

    Article  ADS  Google Scholar 

  107. Metlitski, M.A., Sachdev, S.: Instabilities near the onset of spin density wave order in metals. New J. Phys. 12, 105007 (2010)

    Article  ADS  Google Scholar 

  108. Sachdev, S.: Condensed matter and AdS/CFT. Lect. Notes Phys. 828, 273 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

I thank Eun Gook Moon for valuable comments on the manuscript and for a collaboration [3] which led to Fig. 1.1, R. Fernandes, J. Flouquet, G. Knebel, and J. Schmalian, for providing the plots shown in Fig. 1.2, C. Ruegg for the plot shown in Fig. 1.7, and the participants of the schools for their interest, and for stimulating discussions. This research was supported by the National Science Foundation under grant DMR-0757145, by the FQXi foundation, and by a MURI grant from AFOSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Sachdev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sachdev, S. (2012). Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors. In: Cabra, D., Honecker, A., Pujol, P. (eds) Modern Theories of Many-Particle Systems in Condensed Matter Physics. Lecture Notes in Physics, vol 843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10449-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10449-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10448-0

  • Online ISBN: 978-3-642-10449-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics