Advertisement

Assessment of a Tangible User Interface for an Affordable Humanoid Robot

  • Jacopo Aleotti
  • Stefano Caselli
Part of the Cognitive Systems Monographs book series (COSMOS, volume 6)

Abstract

The paper reports a systematic evaluation of a tangible user interface (TUI) for programming robot tasks in the context of humanoid robotics. The assessment is aimed at exploring the potential benefits of a natural tangible interface for human-robot interaction (HRI) compared to traditional keypad remote controllers. The proposed user interface exploits the Nintendo Wii® wireless game controller whose command signals have been used to drive a humanoid platform. An affordable robot (the Robosapien V2) has been adopted for the experimental evaluation. Two different tasks have been considered. The first experiment is a walking task with obstacle avoidance including object kicking. The second experiment is a gesture reproduction task, which involves both arms and upper body motion. The gesture based TUI has proven to decrease task completion time.

Keywords

Completion Time Mobile Robot Humanoid Robot Navigation Task Command Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleotti, J., Caselli, S.: Imitating Walking Paths with a Low-Cost Humanoid Robot. In: Int’l. Conference on Advanced Robotics, ICAR 2007, Jeju, Korea (2007)Google Scholar
  2. 2.
    Aleotti, J., Caselli, S.: A Low-Cost Humanoid Robot with Human Gestures Imitation Capabilities. In: IEEE Int’l. Symposium on Robot and Human Interactive Communication, RO-MAN 2007, Jeju, Korea (2007)Google Scholar
  3. 3.
    Behnke, S., Müller, J., Schreiber, M.: Playing soccer with robosapien. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 36–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Gams, A., Mudry, P.A.: Gaming controllers for research robots: controlling a humanoid robot using a wiimote. In: Int’l. Electrotechnical and Computer Science Conference, ERK 2008 (2008)Google Scholar
  5. 5.
    Guo, C., Sharlin, E.: Exploring the Use of Tangible User Interfaces for Human-Robot Interaction: A Comparative Study. In: SIGCHI conference on Human factors in computing systems (2008)Google Scholar
  6. 6.
    Hwang, J.H., Arkin, R.C., Kwon, D.S.: Mobile robots at your fingertip: Bezier curve on-line trajectory generation for supervisory control. In: IEEE/RSJ Int’l. Conference on Intelligent Robots and Systems (IROS), Las Vegas, Nevada (2003)Google Scholar
  7. 7.
    Lapping-Carr, M., Jenkins, O., Grollman, D., Schwertfeger, J., Hinkle, T.: Wiimote Interfaces for Lifelong Robot Learning. In: AAAI Symposium on Using AI to Motivate Greater Participation in Computer Science, Palo Alto, CA, USA (2008)Google Scholar
  8. 8.
    Lee, S., Sukhatme, G., Jounghyun Kim, G., Park, C.M.: Haptic Teleoperation of a Mobile Robot: A User Study. Presence: Teleoperators & Virtual Environments 14(3), 345–365 (2005)CrossRefGoogle Scholar
  9. 9.
    Moon, I., Lee, M., Ryu, J., Mun, M.: Intelligent Robotic Wheelchair with EMG-, Gesture-, and Voice-based Interfaces. In: IEEE/RSJ Int’l. Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA (2003)Google Scholar
  10. 10.
    Sato, E., Yamaguchi, T., Harashima, F.: Natural Interface Using Pointing Behavior for Human-Robot Gestural Interaction. IEEE Transactions on Industrial Electronics 54(2), 1105–1111 (2007)CrossRefGoogle Scholar
  11. 11.
    Shiratori, T., Hodgins, J.K.: Accelerometer-based user interfaces for the control of a physically simulated character. ACM Transactions on Graphics (SIGGRAPH Asia 2008) 27(5) (2008)Google Scholar
  12. 12.
    Singh, R., Seth, B., Desai, U.: A Real-Time Framework for Vision based Human Robot Interaction. In: IEEE/RSJ Int’l. Conference on Intelligent Robots and Systems (IROS), Beijing, China (2006)Google Scholar
  13. 13.
    Song, T.R., Park, J.H., Jung, S.M., Jeon, J.W.: The Development of Interface Device for Human robot Interaction. In: Int’l. Conference on Control, Automation and Systems, Seoul, Korea (2007)Google Scholar
  14. 14.
    Stiefelhagen, R., Ekenel, H.K., Fugen, C., Gieselmann, P., Holzapfel, H., Kraft, F., Nickel, K., Voit, M., Waibel, A.: Enabling Multimodal Human Robot Interaction for the Karlsruhe Humanoid Robot. IEEE Transactions on Robotics 23(5), 840–850 (2007)CrossRefGoogle Scholar
  15. 15.
    Varcholik, P., Barber, D., Nicholson, D.: Interactions and Training with Unmanned Systems and the Nintendo Wiimote. In: Interservice/Industry Training, Simulation, and Education Conference, I/ITSEC (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jacopo Aleotti
    • 1
  • Stefano Caselli
    • 1
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversity of ParmaItaly

Personalised recommendations