Shared-Control Paradigms in Multi-Operator-Single-Robot Teleoperation

  • Daniela Feth
  • Binh An Tran
  • Raphaela Groten
  • Angelika Peer
  • Martin Buss
Part of the Cognitive Systems Monographs book series (COSMOS, volume 6)


Extending classical bilateral teleoperation systems to multi-user scenarios allows to broaden their capabilities and extend their applicability to more complex manipulation tasks. In this paper a classical Single-Operator-Single-Robot (SOSR) system is extended to a Multi-Operator-Single-Robot (MOSR) architecture. Two shared-control paradigms which enable visual only or visual and haptic coupling of the two human operators are introduced. A pointing task experiment was conducted to evaluate the two control paradigms and to compare them to a classical SOSR system. Results reveal that operators benefit from the collaborative task execution only if haptic interaction between them is enabled.


Task Performance Force Feedback Haptic Feedback Task Completion Time Haptic Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baier, H., Buss, M., Freyberger, F., Hoogen, J., Kammermeier, P., Schmidt, G.: Distributed PC-based haptic, visual and acoustic telepresence system-experiments in virtual and remote environments. In: Proceedings of the IEEE Virtual Reality, pp. 118–125 (1999), doi:10.1109/VR.1999.756942Google Scholar
  2. 2.
    Basdogan, C., Ho, C.H., Srinivasan, M.A., Slater, M.: An experimental study on the role of touch in shared virtual environments. ACM Trans. Comput.-Hum. Interact. 7(4), 443–460 (2000), CrossRefGoogle Scholar
  3. 3.
    Chebbi, B., Lazaroff, D., Bogsany, F., Liu, P., Ni, L., Rossi, M.: Design and implementation of a collaborative virtual haptic surgical training system. In: IEEE International Conference on Mechatronics and Automation, vol. 1, pp. 315–320 (2005)Google Scholar
  4. 4.
    Esen, H.: Training in virtual environments via a hybrid dynamic trainer model. Ph.D. thesis, Technische Universität München (2007)Google Scholar
  5. 5.
    Glynn, S.J., Fekieta, R., Henning, R.A.: Use of force-feedback joysticks to promote teamwork in virtual teleoperation. In: Proceedings of the Human Factors and Ergonomic Society 45th Annual Meeting (2001)Google Scholar
  6. 6.
    Groten, R., Feth, D., Klatzky, R., Peer, A., Buss, M.: Efficiency analysis in a collaborative task with reciprocal haptic feedback. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)Google Scholar
  7. 7.
    Hashtrudi-Zaad, K., Salcudean, S.E.: Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. The International Journal of Robotics Research 20, 419–445 (2001)CrossRefGoogle Scholar
  8. 8.
    Khademian, B., Hashtrudi-Zaad, K.: A four-channel multilateral shared control architecture for dual-user teleoperation systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 2660–2666 (2007), doi:10.1109/IROS.2007.4399225Google Scholar
  9. 9.
    Kron, A., Schmidt, G.: Haptic telepresent control technology applied to disposal of explosive ordnances: Principles and experimental results. In: Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE 2005, pp. 1505–1510 (2005)Google Scholar
  10. 10.
    Morris, D., Sewell, C., Barbagli, F., Salisbury, K., Blevins, N., Girod, S.: Visuohaptic simulation of bone surgery for training and evaluation. IEEE Computer Graphics and Applications 26(6), 48–57 (2006)CrossRefGoogle Scholar
  11. 11.
    Nudehi, S., Mukherjee, R., Ghodoussi, M.: A shared-control approach to haptic interface design for minimally invasive telesurgical training. IEEE Transactions on Control Systems Technology 13(4), 588–592 (2005)CrossRefGoogle Scholar
  12. 12.
    Reed, K.B., Peshkin, M.A.: Physical collaboration of human-human and human-robot teams. IEEE Transactions on Haptics 1(2), 108–120 (2008)CrossRefGoogle Scholar
  13. 13.
    Sallnäs, E.L.: Improved precision in mediated collaborative manipulation of objects by haptic force feedback. In: Brewster, S., Murray-Smith, R. (eds.) Haptic HCI 2000. LNCS, vol. 2058, pp. 69–75. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Weber, C., Nitsch, V., Unterhinninghofen, U., Färber, B., Buss, M.: Position and force augmentation in a telepresence system and their effects on perceived realism. In: Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniela Feth
    • 1
  • Binh An Tran
    • 1
  • Raphaela Groten
    • 1
  • Angelika Peer
    • 1
  • Martin Buss
    • 1
  1. 1.Institute of Automatic Control EngineeringTechnische Universität MünchenMunichGermany

Personalised recommendations