Modeling of Biomechanical Parameters Based on LTM Structures

  • Christoph Schütz
  • Timo Klein-Soetebier
  • Thomas Schack
Part of the Cognitive Systems Monographs book series (COSMOS, volume 6)


Previous studies concerned with the interaction of cognition and biomechanics demonstrated correlations between ‘global’ parameters of a movement (e. g. duration) and the cognitive representation structure in long term memory. We asked if more ‘local’ biomechanical parameters (i. e. postures) are integrated into such a representation structure as well. To this end, the movement kinematics and representation structures of table tennis experts were measured for the forehand backspin serve and combined in a multilinear regression model. Results show that a few selected parameters of the ball’s flight can be predicted with good accuracy, while task-relevant posture parameters cannot. Thus, the measurement of cognitive representation structures cannot be used for the joint angle modeling of movement kinematics.


Joint Angle Movement Duration Movement Kinematic Biomechanical Parameter Table Tennis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein, N.A.: The co-ordination and regulation of movements, 1st english edn. Pergamon Press Ltd., Oxford (1967)Google Scholar
  2. 2.
    Blaesing, B., Tenenbaum, G., Schack, T.: The cognitive structure of movements in classical dance. Psychology of Sport and Exercise 10(3), 350–360 (2009)CrossRefGoogle Scholar
  3. 3.
    Flash, T., Hogan, N.: The coordination of arm movements - an experimentally confirmed mathematical model. Journal of Neuroscience 5(7), 1688–1703 (1985)Google Scholar
  4. 4.
    Hoffmann, J.: Vorhersage und Erkenntnis. Hogrefe, Goettingen (1993)Google Scholar
  5. 5.
    Hogan, N.: An organizing principle for a class of voluntary movements. Journal of Neuroscience 4(11), 2745–2754 (1984)Google Scholar
  6. 6.
    Jeannerod, M.: Motor representations: One or many? Behavioral and Brain Sciences 19(4), 763 (1996)Google Scholar
  7. 7.
    Jordan, M., Wolpert, D.M.: Computational motor control. In: Gazzaniga, M. (ed.) The Cognitive Neurosciences. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Kalveram, K.: The inverse problem in cognitive, perceptual and proprioceptive control of sensorimotor behaviour. Towards a biologically plausible model of the control of aiming movements. International Journal of Sport and Exercise Psychology 2, 255–273 (2004)Google Scholar
  9. 9.
    Lander, H.J., Lange, K.: Research on the structural and dimensional analysis of conceptually represented knowledge. Zeitschrift fuer Psychologie 204(1), 55–74 (1996)Google Scholar
  10. 10.
    Latash, M.L.: Control of multijoint reaching movement: The elastic membrane metapho. In: Latash, M.L. (ed.) Progress in Motor Control, vol. 1, pp. 315–360. Human Kinetics, Champaign (1998)Google Scholar
  11. 11.
    Latash, M.L.: Neurophysiological basis of movement. Human Kinetics, Champaign (1998)Google Scholar
  12. 12.
    Latash, M.L., Jaric, S.: Instruction-dependent muscle activation patterns within a two-joint-synergy: separating mechanics from neurophysiology. Journal of Motor Behaviour 30(3), 194–198 (1998)CrossRefGoogle Scholar
  13. 13.
    Latash, M.L., Scholz, J.P., Schoener, G.: Motor control strategies revealed in the structure of motor variability. Exercise and Sport Sciences Reviews 30(1), 26–31 (2002)CrossRefGoogle Scholar
  14. 14.
    Levenberg, K.: A method for the solution of certain problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11(2), 431–441 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Rodrigues, S.T., Vickers, J.N., Williams, A.M.: Head, eye and arm coordination in table tennis. Journal of Sports Sciences 20(3), 187–200 (2002)CrossRefGoogle Scholar
  17. 17.
    Rosenbaum, D.A., Cohen, R.G., Jax, S.A., Weiss, D.J., van der Wel, R.: The problem of serial order in behavior: Lashley’s legacy. Human Movement Science 26(4), 525–554 (2007)CrossRefGoogle Scholar
  18. 18.
    Rosenbaum, D.A., Marchak, F., Barnes, H.J., Vaughan, J., Slotta, J.D., Jorgensen, M.J.: Constraints for action selection - overhand versus underhand grips. Attention and Performance 13, 321–342 (1990)Google Scholar
  19. 19.
    Schack, T.: The relationship between motor representation and biomechanical parameters in complex movements: Towards an integrative perspective of movement science. European Journal of Sport Science 3(2), 1–13 (2003)CrossRefGoogle Scholar
  20. 20.
    Schack, T.: The cognitive architecture of complex movement. International Journal of Sport and Exercise Psychology; Special Issue: The construction of action - new perspectives in movement science. Part II 2(4), 403–438 (2004)Google Scholar
  21. 21.
    Schack, T., Mechsner, F.: Representation of motor skills in human long-term memory. Neuroscience Letters 391(3), 77–81 (2006)CrossRefGoogle Scholar
  22. 22.
    Schack, T., Tenenbaum, G.: Perceptual and cognitive control in action - a preface. International Journal of Sport and Exercise Psychology; Special Issue: The construction of action - new perspectives in movement science. Part I 2(3), 207–209 (2004)Google Scholar
  23. 23.
    Seve, C., Saury, J., Ria, L., Durand, M.: Structure of expert players’ activity during competitive interaction in table tennis. Research Quarterly for Exercise and Sport 74(1), 71–83 (2003)Google Scholar
  24. 24.
    Shim, J.K., Latash, M.L., Zatsiorsky, V.M.: Prehension synergies: Trial-to-trial variability and principle of superposition during static prehension in three dimensions. J. Neurophysiol. 93(6), 3649–3658 (2005)CrossRefGoogle Scholar
  25. 25.
    Verwey, W.B., Abrahamse, E.L., Jimenez, L.: Segmentation of short keying sequences does not spontaneously transfer to other sequences. Human Movement Science 28(3), 348–361 (2009)CrossRefGoogle Scholar
  26. 26.
    Wu, G., van der Helm, F.C.T., Veeger, H.E.J., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A.R., McQuade, K., Wang, X.G., Werner, F.W., Buchholz, B.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion - part II: shoulder, elbow, wrist and hand. Journal of Biomechanics 38(5), 981–992 (2005)CrossRefGoogle Scholar
  27. 27.
    Zatsiorsky, V.M.: Kinematics of human motion. Human Kinetics, Champaign (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christoph Schütz
    • 1
  • Timo Klein-Soetebier
    • 1
  • Thomas Schack
    • 1
    • 2
    • 3
  1. 1.Bielefeld UniversityBielefeld
  2. 2.Cognitive Interaction Technology, Center of ExcellenceBielefeld UniversityBielefeld
  3. 3.CoR-Lab, Research Institute for Cognition and RoboticsBielefeld UniversityBielefeld

Personalised recommendations