A Framework for Universally Composable Non-committing Blind Signatures

  • Masayuki Abe
  • Miyako Ohkubo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5912)


A universally composable (UC) blind signature functionality demands users to commit to the message to be blindly signed. It is thereby impossible to realize in the plain model. We show that even non-committing variants of UC blind signature functionality remain not realizable in the plain model. We then characterize adaptively secure UC non-committing blind signatures in the common reference string model by presenting equivalent stand-alone security notions. We also present a generic construction based on conceptually simple Fischlin’s blind signature scheme.


Signature Scheme Proof System Blind Signature Honest User Adaptive Adversary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abe, M., Ohkubo, M.: A framework for universally composable non-committing blind signatures. IACR ePrint Archive 2009 (2009)Google Scholar
  2. 2.
    Buan, A.B., Kråkmo, K.G.L.: Universally composable blind signatures in the plain model. IACR ePrint Archive 2006/405 (2006)Google Scholar
  3. 3.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145 (2001)Google Scholar
  4. 4.
    Canetti, R.: On universally composable notions of security for signature, certification and authentication. IACR ePrint Archive 2003/239 (2003)Google Scholar
  5. 5.
    Canetti, R.: Universally composable signatures, certification and authentication. In: 17th Computer Security Foundations Workshop, CSFW (2004); Revised version available in IACR ePrint archive 2003/239Google Scholar
  6. 6.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. IACR ePrint Archive 2000/067. 2nd version updated on 13 Dec (2005)Google Scholar
  7. 7.
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, pp. 199–204. Prenum Publishing Corporation (1982)Google Scholar
  10. 10.
    Chaum, D.L.: Elections with unconditionally-secret ballots and disruptions equivalent to breaking RSA. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 177–182. Springer, Heidelberg (1988)Google Scholar
  11. 11.
    Fischlin, M.: Round-optimal composable blind signatures in the common reference model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993)Google Scholar
  14. 14.
    Garay, J., Kiayias, A., Zhou, H.-S.: Sound and fine-grain specification of cryptographic tasks. IACR ePrint Archive 2008/132 (2008)Google Scholar
  15. 15.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Hazay, C., Katz, J., Koo, C., Lindell, Y.: Concurrently-secure blind signatures without random oracles or setup assumptions. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Kiayias, A., Zhou, H.: Equivocal blind signatures and adaptive UC-security. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 340–355. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Lindell, Y.: Bounded-concurrent secure two-party computation without setup assumptions. In: STOC, pp. 683–692. ACM, New York (2003)Google Scholar
  21. 21.
    Lindell, Y.: Lower bounds and impossibility results for concurrent self composition. Journal of Cryptology 21(2), 200–249 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 339–360 (2000)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Masayuki Abe
    • 1
  • Miyako Ohkubo
    • 1
  1. 1.Information Sharing Platform LaboratoriesNTT CorporationJapan

Personalised recommendations