Advertisement

Simple Adaptive Oblivious Transfer without Random Oracle

  • Kaoru Kurosawa
  • Ryo Nojima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5912)

Abstract

Adaptive oblivious transfer (OT) is a two-party protocol which simulates an ideal world such that the sender sends M 1, ⋯ , M n to the trusted third party (TTP), and the receiver receives \(M_{\sigma_i}\) from TTP adaptively for i = 1,2, ⋯ k. This paper shows the first pairing-free fully simulatable adaptive OT. It is also the first fully simulatable scheme which does not rely on dynamic assumptions. Indeed our scheme holds under the DDH assumption.

Keywords

Adaptive OT Fully Simulatable DDH Standard Model 

References

  1. 1.
    Brassard, G., Crépeau, C., Robert, J.M.: All-or-Nothing Disclosure of Secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987)Google Scholar
  2. 2.
    Camenisch, J.L., Neven, G., Shelat, A.: Simulatable Adaptive Oblivious Transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Chaum, D.: Zero-Knowledge Undeniable Signatures. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)Google Scholar
  4. 4.
    Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient Zero-Knowledge Proofs of Knowledge Without Intractability Assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 354–373. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Cramer, R., Damgård, I.B., Schoenmakers, B.: Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts. Commun. ACM 28(6), 637–647 (1985)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A Completeness Theorem for Protocols with Honest Majority. In: STOC 1987, pp. 218–229 (1987)Google Scholar
  8. 8.
    Green, M., Hohenberger, S.: Blind Identity-Based Encryption and Simulatable Oblivious Transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–282. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Green, M., Hohenberger, S.: Universally Composable Adaptive Oblivious Transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Kalai, Y.T.: Smooth Projective Hashing and Two-Message Oblivious Transfer. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Kilian, J.: Founding Cryptography on Oblivious Transfer. In: STOC 1988, pp. 20–31 (1988)Google Scholar
  13. 13.
    Lindell, A.Y.: Efficient Fully-Simulatable Oblivious Transfer. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 52–70. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Naor, M., Pinkas, B.: Oblivious Transfer and Polynomial Evaluation. In: STOC 1999, pp. 245–254 (1999)Google Scholar
  15. 15.
    Naor, M., Pinkas, B.: Oblivious Transfer with Adaptive Queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Naor, M., Pinkas, B.: Efficient Oblivious Transfer Protocols. In: SODA 2001, pp. 448–457 (2001)Google Scholar
  17. 17.
    Naor, M., Reingold, O.: Number-Theoretic Constructions of Efficient Pseudo-random Functions. J. ACM 51(2), 231–262 (2004)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Ogata, W., Kurosawa, K.: Oblivious Keyword Search. J. Complexity 20(2-3), 356–371 (2004); Cryptology ePrint Archive: Report 2002/182zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Schnorr, C.-P.: Efficient Signature Generation by Smart Cards. J. Cryptology 4(3), 161–174 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Yao, A.C.-C.: How to Generate and Exchange Secrets. In: FOCS 1986, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kaoru Kurosawa
    • 1
  • Ryo Nojima
    • 2
  1. 1.Ibaraki UniversityJapan
  2. 2.NICTJapan

Personalised recommendations