Advertisement

Abstract

In this paper, we formalize an attack scheme using the key-dependent property, called key-dependent attack. In this attack, the intermediate value, whose distribution is key-dependent, is considered. The attack determines whether a key is right by conducting statistical hypothesis test of the intermediate value. The time and data complexity of the key-dependent attack is also discussed.

We also apply key-dependent attack on reduced-round IDEA. This attack is based on the key-dependent distribution of certain items in Biryukov-Demirci Equation. The attack on 5.5-round variant of IDEA requires 221 chosen plaintexts and 2112.1 encryptions. The attack on 6-round variant requires 249 chosen plaintexts and 2112.1 encryptions. Compared with the previous attacks, the key-dependent attacks on 5.5-round and 6-round IDEA have the lowest time and data complexity, respectively.

Keywords

Block Cipher Key-Dependent Attack IDEA 

References

  1. 1.
    Ayaz, E.S., Selçuk, A.A.: Improved DST Cryptanalysis of IDEA. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 1–14. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Ben-Aroya, I., Biham, E.: Differential Cryptanalysis of Lucifer. J. Cryptology 9(1), 21–34 (1996)zbMATHCrossRefGoogle Scholar
  3. 3.
    Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Biham, E., Dunkelman, O., Keller, N.: New Cryptanalytic Results on IDEA. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 412–427. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Biham, E., Dunkelman, O., Keller, N.: A New Attack on 6-Round IDEA. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 211–224. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)Google Scholar
  8. 8.
    Biryukov, A., Nakahara Jr., J., Preneel, B., Vandewalle, J.: New Weak-Key Classes of IDEA. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 315–326. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Borst, J., Knudsen, L.R., Rijmen, V.: Two Attacks on Reduced IDEA. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Contini, S., Rivest, R.L., Robshaw, M.J.B., Yin, Y.L.: Improved Analysis of Some Simplified Variants of RC6. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 1–15. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Daemen, J., Govaerts, R., Vandewalle, J.: Weak keys for IDEA. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Demirci, H.: Square-like Attacks on Reduced Rounds of IDEA. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 147–159. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Demirci, H., Selçuk, A.A., Türe, E.: A New Meet-in-the-Middle Attack on the IDEA Block Cipher. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 117–129. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Hawkes, P.: Differential-Linear Weak Key Classes of IDEA. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Hawkes, P., O’Connor, L.: On Applying Linear Cryptanalysis to IDEA. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 105–115. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  16. 16.
    Nakahara Jr., J., Preneel, B., Vandewalle, J.: The Biryukov-Demirci Attack on Reduced-Round Versions of IDEA and MESH Ciphers. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 98–109. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Junod, P.: On the Optimality of Linear, Differential, and Sequential Distinguishers. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 17–32. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Junod, P.: New Attacks Against Reduced-Round Versions of IDEA. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 384–397. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptoanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 237–251. Springer, Heidelberg (1996)Google Scholar
  20. 20.
    Knudsen, L.R., Rijmen, V.: On the Decorrelated Fast Cipher (DFC) and Its Theory. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 81–94. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Lai, X.: On the Design and Security of Block Ciphers. ETH Series in Information Processing. Harturg-Gorre Verlag, Konstanz (1992)Google Scholar
  22. 22.
    Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg (1991)Google Scholar
  23. 23.
    Matsui, M.: Linear Cryptoanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  24. 24.
    Meier, W.: On the Security of the IDEA Block Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 371–385. Springer, Heidelberg (1994)Google Scholar
  25. 25.
    Raddum, H.: Cryptanalysis of IDEA-X/2. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 1–8. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xiaorui Sun
    • 1
  • Xuejia Lai
    • 1
  1. 1.Department of Computer ScienceShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations