Advertisement

On Black-Box Constructions of Predicate Encryption from Trapdoor Permutations

  • Jonathan Katz
  • Arkady Yerukhimovich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5912)

Abstract

Predicate encryption is a recent generalization of identity-based encryption (IBE), broadcast encryption, attribute-based encryption, and more. A natural question is whether there exist black-box constructions of predicate encryption based on generic building blocks, e.g., trapdoor permutations. Boneh et al. (FOCS 2008) recently gave a negative answer for the specific case of IBE.

We show both negative and positive results. First, we identify a combinatorial property on the sets of predicates/attributes and show that, for any sets having this property, no black-box construction of predicate encryption from trapdoor permutations (or even CCA-secure encryption) is possible. Our framework implies the result of Boneh et al. as a special case, and also rules out, e.g., black-box constructions of forward-secure encryption and broadcast encryption (with many excluded users). On the positive side, we identify conditions under which predicate encryption schemes can be constructed based on any CPA-secure (standard) encryption scheme.

Keywords

Encryption Scheme Broadcast Encryption Challenge Ciphertext Trapdoor Permutation Broadcast Encryption Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  2. 2.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security & Privacy, pp. 321–334. IEEE, Los Alamitos (2007)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Boneh, D., Franklin, M.K.: Identity based encryption from the Weil pairing. SIAM Journal on Computing 32(3), 586–615 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the impossibility of basing identity-based encryption on trapdoor permutations. In: 49th Annual Symposium on Foundations of Computer Science (FOCS), pp. 283–292. IEEE, Los Alamitos (2008)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. Journal of Cryptology 20(3), 265–294 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of r others. Israeli Journal of Mathematics 51, 79–89 (1985)zbMATHCrossRefGoogle Scholar
  9. 9.
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic cryptographic constructions. SIAM J. Computing 35(1), 217–246 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS 2006: 13th ACM Conference on Computer and Communications Security, pp. 89–98. ACM Press, New York (2006)CrossRefGoogle Scholar
  12. 12.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st ACM Annual ACM Symposium on Theory of Computing (STOC), pp. 44–61. ACM Press, New York (1989)Google Scholar
  13. 13.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting problems without computational assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: ACM CCS 2007: 14th ACM Conference on Computer and Communications Security, pp. 195–203. ACM Press, New York (2007)CrossRefGoogle Scholar
  16. 16.
    Porat, E., Rothschild, A.: Explicit non-adaptive combinatorial group testing schemes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 748–759. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jonathan Katz
    • 1
  • Arkady Yerukhimovich
    • 1
  1. 1.Department of Computer ScienceUniversity of Maryland 

Personalised recommendations