Skip to main content

Motion Pattern Encapsulation for Data-Driven Constraint-Based Motion Editing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5884))

Abstract

The growth of motion capture systems have contributed to the proliferation of human motion database, mainly because human motion is important in many applications, ranging from games entertainment and films to sports and medicine. However, the captured motions normally attend specific needs. As an effort for adapting and reusing captured human motions in new tasks and environments and improving the animator’s work, we present and discuss a new data-driven constraint-based animation system for interactive human motion editing. This method offers the compelling advantage that it provides faster deformations and more natural-looking motion results compared to goal-directed constraint-based methods found in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Safonova, A., Hodgins, J.K., Pollard, N.S.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23(3), 514–521 (2004)

    Article  Google Scholar 

  2. Glardon, P., Boulic, R., Thalmann, D.: Robust on-line adaptive footplant detection and enforcement for locomotion. Vis. Comput. 22(3), 194–209 (2006)

    Article  Google Scholar 

  3. Chai, J., Hodgins, J.K.: Constraint-based motion optimization using a statistical dynamic model. ACM Trans. Graph. 26(3), 8 (2007)

    Article  Google Scholar 

  4. Urtasun, R., Glardon, P., Boulic, R., Thalmann, D., Fua, P.: Style-based motion synthesis. Computer Graphics Forum (CGF) 23(4), 799–812 (2004)

    Article  Google Scholar 

  5. Raunhardt, D., Boulic, R.: Motion constraint. Vis. Comput. 25(5-7), 509–518 (2009)

    Article  Google Scholar 

  6. Shin, H.J., Lee, J.: Motion synthesis and editing in low-dimensional spaces. Comput. Animat. Virtual Worlds 17(3‐4), 219–227 (2006)

    Article  Google Scholar 

  7. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Google Scholar 

  8. Le Callennec, B., Boulic, R.: Interactive motion deformation with prioritized constraints. Graphical Models 68(2), 175–193 (2006); Special Issue on SCA 2004

    Article  Google Scholar 

  9. Gleicher, M.: Comparing constraint-based motion editing methods. Graphical models 63(2), 107–134 (2001)

    Article  MATH  Google Scholar 

  10. Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of motions for interactive human-like animation. In: EUROGRAPHICS, August-September 2005, vol. 24, pp. 343–352 (2005)

    Google Scholar 

  11. Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for human-like figures. In: Proceedings of ACM SIGGRAPH (1999)

    Google Scholar 

  12. Liu, L., Zhao-qi, W., Deng-Ming, Z., Shi-Hong, X.: Motion edit with collision avoidance. In: Proceedings of the WSCG, January 2006, pp. 303–310 (2006)

    Google Scholar 

  13. Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. In: SIGGRAPH 2002: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 483–490. ACM, New York (2002)

    Chapter  Google Scholar 

  14. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans. Graph. 21(3), 473–482 (2002)

    Article  Google Scholar 

  15. Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. ACM Trans. Graph. 24(3), 1062–1070 (2005)

    Article  Google Scholar 

  16. Grochow, K., Martin, S.L., Hertzmann, A., Popovi, Z.: Style-based inverse kinematics. ACM Trans. Graph. 23(3), 522–531 (2004)

    Article  Google Scholar 

  17. Carvalho, S.R., Boulic, R., Thalmann, D.: Interactive low-dimensional human motion synthesis by combining motion models and pik. Computer Animation & Virtual Worlds 18 (2007); Special Issue of Computer Animation and Social Agents (CASA 2007)

    Google Scholar 

  18. Grassia, F.S.: Practical parameterization of rotations using the exponential map. Journal of Graphics Tools 3(3), 29–48 (1998)

    Google Scholar 

  19. Shoemake, K.: Animating rotation with quaternion curves. In: SIGGRAPH 1985, pp. 245–254. ACM Press, New York (1985)

    Chapter  Google Scholar 

  20. Baerlocher, P.: Inverse Kinematics Techniques of The Interactive Posture Control of Articulated Figures. Phd thesis, cole Polytechnique Fdral de Lausanne (EPFL) - IC School of Computer and Communication Sciences (2001)

    Google Scholar 

  21. Kochanek, D.H.U., Bartels, R.H.: Interpolating splines with local tension, continuity, and bias control. SIGGRAPH Comput. Graph. 18(3), 33–41 (1984)

    Article  Google Scholar 

  22. Whitney, D.E.: Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-Mach. Syst. 10, 47–53 (1969)

    Article  Google Scholar 

  23. Maciejewski, A.A.: Dealing with the ill-conditioned equations of motion forarticulated figures. In: IEEE Computer Graphics and Applications, May 1990, vol. 10, pp. 63–71 (1990)

    Google Scholar 

  24. Carvalho, S.R., Boulic, R., Thalmann, D.: Motion pattern preserving ik operating in the motion principal coefficients space. In: Proceedings of 15-th WSCG, January-February 2007, pp. 97–104 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carvalho, S.R., Boulic, R., Thalmann, D. (2009). Motion Pattern Encapsulation for Data-Driven Constraint-Based Motion Editing. In: Egges, A., Geraerts, R., Overmars, M. (eds) Motion in Games. MIG 2009. Lecture Notes in Computer Science, vol 5884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10347-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10347-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10346-9

  • Online ISBN: 978-3-642-10347-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics