Skip to main content

Linearization of radiative transfer in spherical geometry: an application of the forward-adjoint perturbation theory

  • Chapter
  • First Online:

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

The remote sensing of atmospheric constituents with limb-viewing satellite instruments or with nadir viewing instruments at large solar zenith angles requires a forward model that simulates the backscattered radiance taking the spherical shape of the Earth atmosphere into account. In addition, many retrieval schemes are based on a linearization of such a forward model. Whenever it is important to take multiple scattering into account (e.g. due to light scattering air molecules, aerosols and clouds) the linearization of the measurement simulation with respect to the parameters to be retrieved is not trivial. Here, the forward-adjoint perturbation theory provides a general method to linearize radiative transfer. In the first part of this review chapter we provide the theoretical background of the linearization approach for a radiative transfer problem in a spherical model atmosphere which is illuminated by a collimated solar beam. Using an operator formulation of radiative transfer allows one to express the linearization approach in a universally valid notation. Depending on the particular formulation of the radiative transfer problem the perturbation of internal sources has to be taken into account in addition. The needed adjoint calculation corresponds to a so-called searchlight problem that requires the use of three-dimensional radiative transfer simulations in general. Subsequently we show how symmetries of the forward radiation field and a proper choice of the radiation sources can be used to simplify the needed adjoint calculations substantially.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. N. Adams and G. W. Kattawar. Radiative transfer in spherical shell atmospheres, i. Rayleigh scattering. Icarus, 35:139–151, 1978.

    Article  Google Scholar 

  2. D. E. Anderson. The troposphere-stratosphere radiation field at twilight: a spherical model. Planet. Space Sci., 31:1517–1523, 1983.

    Article  CAS  Google Scholar 

  3. M. Balluch. A new numerical model to compute photolysis rates and solar heating with anisotropic scattering in spherical geometry. Ann. Geophysicae, 14:80–97, 1996.

    Article  CAS  Google Scholar 

  4. G. I. Bell and S. Glasstone. Nuclear Reactor Theory. Van Nostrand Reinholt, New York, 1970.

    Google Scholar 

  5. H. Bovensmann, J. P. Burrows, M. Buchwitz, J. Frerick, S. Noel, V. V. Rozanov, K. V. Chance, and A. P. H. Goede. Sciamachy: Mission objectives and measurement modes. J. Atmos. Sci., 56:127–150, 1999.

    Article  Google Scholar 

  6. M. Box, S. Gerstl, and C. Simmer. Application of the adjoint formulation to the calculation of atmospheric radiative effects. Beitr. Phys. Atmos., 61:303–311, 1988.

    Google Scholar 

  7. M. Box, S. Gerstl, and C. Simmer. Computation of atmospheric radiative effects via perturbation theory. Beitr. Phys. Atmos., 62:193–199, 1989.

    Google Scholar 

  8. M. A. Box, M. Keevers, and B. H. J. McKellar. On the perturbation series for radiative effects. J. Quant. Spectros. Radiat. Transfer, 39:219–223, 1988.

    Article  CAS  Google Scholar 

  9. K. M. Case. Transfer problems and the reciprocity principle. Rev. Mod. Phys., 29:651–663, 1957.

    Article  Google Scholar 

  10. K. M. Case and P. F. Zweifel. Linear Transport Theory. Addison-Wesley, Reading, 1967.

    Google Scholar 

  11. D. G. Collins, W. G. Blaettner, M. B. Wells, and H. G. Horak. Backward Monte Carlo calculations of the polarization characteristics of the radiation emerging from spherical shell atmospheres. Appl. Opt., 11:2684–2696, 1972.

    Article  CAS  Google Scholar 

  12. A. Dahlback and K. Stamnes. A new spherical model for computing the radiation field available for photolysis and heating at twilight. Planet. Space Sci., 39:671–683, 1991.

    Article  Google Scholar 

  13. A. Doicu, T. Trautmann, F. Schreier, S. Slijkhuis, S. Hilgers, A. von Bargen, M. Hess, and B. Aberle. Radiative transfer models for a spherical shell atmosphere. in preparation.

    Google Scholar 

  14. L. Flynn, J. Hornstein, and E. Hilsenrath. The ozone mapping and profiler suite (omps): The next generation of us ozone monitoring instruments. IEEE IGARSS Proceedings, Anchorage, Alaska, 2004.

    Google Scholar 

  15. O. P. Hasekamp and J. Landgraf. A linearized vector radiative transfer model for atmospheric trace gas retrieval. J. Quant. Spectrosc. Radiat. Transfer, 75:221–238, 2002.

    Article  CAS  Google Scholar 

  16. O. P. Hasekamp and J. Landgraf. Linearization of vector radiative transfer with respect to aerosol properties and its use in satellite remote sensing. J. Geophys. Res., D04203:doi:10.1029/2004JD005260, 2005.

    Google Scholar 

  17. O. P. Hasekamp, J. Landgraf, and R. van Oss. The need of polarization modeling for ozone profile retrieval from backscattered sunlight. J. Geophys. Res., 107:4692, 2002.

    Article  Google Scholar 

  18. B. M. Herman, A. Ben-David, and K. J. Thome. Numerical technique for solving the radiative transfer equation for a spherical shell atmosphere. Appl. Opt., 33:1760–1770, 1994.

    Article  Google Scholar 

  19. J. W. Kaiser and J. P. Burrows. Fast weighting functions for retrievals from limb scattering measurements. J. Quant. Spectrosc. Radiat. Transfer, 77:273–283, 2003.

    Article  CAS  Google Scholar 

  20. P. Kunasz and L. H. Auer. Short characteristic integration of radiative transfer problems: formal solution in two-dimensional slabs. J. Quant. Spectrosc. Radiat. Transfer, 39:67–79, 1988.

    Article  Google Scholar 

  21. J. Landgraf and O. P. Hasekamp. Ozone profile retrieval from satellite measurements of nadir backscattered light in the ultraviolet of the solar spectrum. Recent Res. Devel. Geophysics, 4:157–189, 2002.

    CAS  Google Scholar 

  22. J. Landgraf, O. P. Hasekamp, and T. Trautmann. Linearization of radiative transfer with respect to surface properties. J. Quant. Spectrosc. Radiat. Transfer, 72:327–339, 2002.

    Article  CAS  Google Scholar 

  23. J. Landgraf, O. P. Hasekamp, T. Trautmann, and M. A. Box. A linearized radiative transfer model for ozone profile retrieval using the analytical forward-adjoint perturbation theory approach. J. Geophys. Res., 106:27291–27306, 2001.

    Article  CAS  Google Scholar 

  24. D. J. Lary and M. Balluch. Solar heating rates: the importance of spherical geometry. J. Atmos. Sci., 50:3983–3993, 1993.

    Article  Google Scholar 

  25. J. Lenoble and Z. Sekera. Equation of radiative transfer in a planetary spherical atmosphere. Proc. Nat. Acad. Sci., 47:372–389, USA, 1961.

    Google Scholar 

  26. J. Lewins. Importance. The Adjoint Function. The Physical Basis of Variational and Perturbation Theory in Transport and Diffusion Problems. Pergamon Press, New York, 1965.

    Google Scholar 

  27. R. P. Loughman, E. Griffioen, L. Oikarinen, O. V. Postylyakov, A. Rozanov, D. E. Flittner, and D. F. Rault. Comparison of radiative transfer models for limb-viewing scattered sunlight measurements. J. Geophys. Res., 109:D06303, doi:10.1029/2003JD003854, 2004.

    Google Scholar 

  28. G. Marchuk. Equation for the value of information from weather satellites and formulation of inverse problems. Cosmic Res., 2:394–409, 1964.

    Google Scholar 

  29. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov. The Monte Carlo Methods in Atmospheric Optics. Springer Verlag, Berlin, 1980.

    Google Scholar 

  30. A. Marshak and A. B. Davis. 3D Radiative Transfer in Cloudy Atmospheres. Springer, New York, 2005.

    Google Scholar 

  31. C. A. McLinden, J. C. McConnell, E. Griffioen, and C. T. McElroy. A vector radiativetransfer model for the odin/osiris project. Can. J. Phys., 80:375–393, 2002.

    Article  CAS  Google Scholar 

  32. M. I. Mishchenko, A. A. Lacis, and L. D. Travis. Errors induced by the neglect of polarization in radiance calculations for rayleigh-scattering atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 51:491–510, 1994.

    Article  Google Scholar 

  33. M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Scattering, Absorption and Emission of Light by Small Particles. Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  34. National Oceanic and Atmospheric Administration (NOAA). U.S. Standard Atmosphere. Rep. NOAA-S/T76-1562, Washington, D.C., U.S. Gov. Print. Off., 1976.

    Google Scholar 

  35. L. Oikarinen. Effect of surface albedo variations on uv-visible limb-scattering measurements of the atmosphere. J. Geophys. Res., 107:doi:10.1029/2001JD001492, 2002.

    Google Scholar 

  36. L. Oikarinen, E. Sihvola, and E. Kyrola. Multiple scattering in limb viewing geometry. J. Geophys. Res., 104:31261–31274, 1999.

    Article  Google Scholar 

  37. P. T. Partain, A. K. Heidinger, and G. L. Stephens. High spectral resolution atmospheric radiative transfer: Application of the equivalence theorem. J. Geophys. Res., 105:2163–2177, 2000.

    Article  Google Scholar 

  38. W. F. Payne, E. J. Llewellyn, and J. S. Matsushita. Osiris: An imaging spectrograph for odin. 46th International Astronautical Congress, Oslo, Norway, 1995.

    Google Scholar 

  39. P. Phillips. A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach., 9:84–97, 1962.

    Google Scholar 

  40. O. V. Postylyakov. Linearized vector radiative transfer model mcc++ for a spherical atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 88:297–317, 2004.

    Article  CAS  Google Scholar 

  41. C. Rodgers. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys., 14:609–624, 1976.

    Article  Google Scholar 

  42. A. Rozanov, V. Rozanov, and J. P. Burrows. A numerical radiative transfer model for a spherical planetary atmosphere: combined differential-integral approach involving the picard iterative approximation. J. Quant. Spectrosc. Radiat. Transfer, 69:491–512, 2001.

    Article  CAS  Google Scholar 

  43. A. Rozanov, V. Rozanov, and J. P. Burrrows. Combined differential-integral approach for the radiation field computation in a spherical shell atmosphere: non-limb geometry. J. Geophys. Res., 105:22937–43, 2000.

    Article  Google Scholar 

  44. V. V. Rozanov, M. Buchwitz, K. U. Eichmann, R. de Beek, and J. P. Burrows. Sciatran – a new radiative transfer model for geophysical applications in the 240–2400nm spectral region: the pseudo-spherical version. Adv. Space Res., 29:1831–1835, 2002.

    Article  CAS  Google Scholar 

  45. V. V. Rozanov, T. Kurosu, and J. P. Burrrows. Retrieval of atmospheric constituents in the uv-visible: A new quasi-analytical approach for the calculation of weighting functions. J. Quant. Spectrosc. Radiat. Transfer, 60:277–99, 1998.

    Article  CAS  Google Scholar 

  46. K. K. Sen and S. J. Wilson. Radiative Transfer in Curved Media. World Scientific, Singapore, 1990.

    Google Scholar 

  47. O. I. Smokty. Multiple light scattering in the spherical planetary atmosphere. Pure Appl. Geophys., 72:214–226, 1969.

    Article  Google Scholar 

  48. V. Sobolev. Light Scattering in Planetary Atmospheres. Pergamon Press, Oxford, 1975.

    Google Scholar 

  49. V. V. Sobolev and I. N. Minin. Light scattering in the spherical atmosphere. ISZ (artificial earth satellites), 14, 1962.

    Google Scholar 

  50. F. Spada, M. C. Krol, and P. Stammes. Mcscia: Application of the equivalence theorem in a monte carlo radiative transfer model for spherical shell atmospheres. Atmos. Chem. Phys. Discuss., 6:1199–1248, 2006.

    Article  Google Scholar 

  51. A. Tikhonov. On the solution of incorrectly stated problems and a method of regularization. Dokl. Akad. Nauk SSSR, 151:501–504, 1963.

    Google Scholar 

  52. T. Trautmann and M. A. Box. Green’s function computation in radiative transfer theory. In de Groot, R. A., and Nadrchal, J. (Eds), Physics Computing ’92. World Scientific, Singapore, 1993.

    Google Scholar 

  53. E. A. Ustinov. Inverse problem of the photometry of the solar radiation reflected by an optically thick planetary atmosphere. 2. Numerical aspects and requirements on the observation geometry. Cosmic Res., 29:785–800, 1991.

    Google Scholar 

  54. E. A. Ustinov. Inverse problem of the photometry of the solar radiation reflected by an optically thick planetary atmosphere. mathematical framework and weighting functions of linearized inverse problem. Cosmic Res., 29:519–531, 1991.

    Google Scholar 

  55. E. A. Ustinov. Inverse problem of the photometry of the solar radiation reflected by an optically thick planetary atmosphere. 3. remote sensing of minor gaseous constituents and an atmospheric aerosol. Cosmic Res., 30:170–181, 1992.

    Google Scholar 

  56. R. J. van der A. Improved ozone profile retrieval from combined nadir/limb observations of SCIAMACHY. J. Geophys. Res., 106:14583–94, 2001.

    Google Scholar 

  57. H. H. Walter and J. Landgraf. Towards linearization of atmospheric radiative transfer in spherical geometry. J. Quant. Spectrosc. Radiat. Transfer, 92:175–200, 2005.

    Article  Google Scholar 

  58. H. H. Walter, J. Landgraf, and O. P. Hasekamp. Linearization of a pseudo-spherical vector radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 85:251–283, 2004.

    Article  CAS  Google Scholar 

  59. H. H. Walter, J. Landgraf, F. Spada, and A. Doicu. Linearization of a radiative transfer model in spherical geometry. J. Geophys. Res., 111:doi:10.1029/2005JD007014, 2006.

    Google Scholar 

  60. Q. Yi, M. A. Box, and T. Trautmann. Higher-order radiative perturbation theory. J. Quant. Spectrosc. Radiat. Transfer, 84:105–114, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger H. Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walter, H.H., Landgraf, J. (2010). Linearization of radiative transfer in spherical geometry: an application of the forward-adjoint perturbation theory. In: Kokhanovsky, A. (eds) Light Scattering Reviews 5. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10336-0_4

Download citation

Publish with us

Policies and ethics