Skip to main content

Edge-Preserving Laplacian Pyramid

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5875))

Included in the following conference series:

Abstract

The Laplacian pyramid recursively splits an image into local averages and local differences using a fixed Gaussian interpolation function. We propose a spatially variant interpolation function that is adaptive to curvilinear edges in the image. Unlike the signal-based multiscale analysis where a step edge is multiply represented at all scales, our perception-based multiscale analysis preserves the edge at a single scale as much as possible. We demonstrate that our average pyramid retains boundaries and shading at lower spatial and tonal resolutions, whereas our difference pyramid refines edge locations and intensity details with a remarkably sparse code, delivering an image synopsis that is uncompromising between faithfulness and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burt, P., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Transactions on Communication COM-31, 532–540 (1983)

    Article  Google Scholar 

  2. Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. on PAMI 11(7), 674–693 (1989)

    MATH  Google Scholar 

  3. Burt, P., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Transactions on Graphics 2(4), 217–236 (1983)

    Article  Google Scholar 

  4. Marr, D.: Vision. Freeman, CA (1982)

    Google Scholar 

  5. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 22–26 (1985)

    Google Scholar 

  6. Williams, L.R., Jacobs, D.W.: Local parallel computation of stochastic completion fields. Neural computation 9, 859–881 (1997)

    Article  Google Scholar 

  7. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. International Journal of Computer Vision (2001)

    Google Scholar 

  8. Yu, S.X.: Segmentation induced by scale invariance. In: IEEE Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  9. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: International Conference on Computer Vision (1998)

    Google Scholar 

  10. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on PAMI 33(7), 629–639 (1990)

    Google Scholar 

  11. Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. SIAM Journal on Multiscale Modeling and Simulation 4, 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Buades, A., Coll, B., Morel, J.-M.: The staircasing effect in neighbourhood filters and its solution. IEEE Transactions on Image Processing 15(6), 1499–1505 (2006)

    Article  Google Scholar 

  13. Candes, E.: Ridgelets: Theory and Applications. PhD thesis, Stanford University (1998)

    Google Scholar 

  14. Candes, E., Donoho, D.L.: Curvelets: A surprisingly effective nonadaptive representation of objects with edges. In: Curves and Surfaces. Vanderbilt University Press (1999)

    Google Scholar 

  15. Candes, E.J., Guo, F.: New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction. Signal Processing 82, 1519–1543 (2002)

    Article  MATH  Google Scholar 

  16. Ebrahimi, M., Vrscay, E.R.: Solving the inverse problem of image zooming using ‘self-examples’. In: International Conference on Image Analysis and Recognition, pp. 117–130 (2007)

    Google Scholar 

  17. Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. on Image Processing 18 (2009)

    Google Scholar 

  18. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: International Conference on Computer Vision (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, S.X. (2009). Edge-Preserving Laplacian Pyramid. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10331-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10331-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10330-8

  • Online ISBN: 978-3-642-10331-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics