Genetically Modified Animals and Pharmacological Research

  • Dominic J. WellsEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 199)


This chapter reviews the use of genetically modified animals and the increasingly detailed knowledge of the genomes of the domestic species. The different approaches to genetic modification are outlined as are the advantages and disadvantages of the techniques in different species. Genetically modified mice have been fundamental in understanding gene function and in generating affordable models of human disease although these are not without their drawbacks. Transgenic farm animals have been developed for nutritionally enhanced food, disease resistance and xenografting. Transgenic rabbits, goats, sheep and cows have been developed as living bioreactors producing potentially high value biopharmaceuticals, commonly referred to as “pharming”. Domestic animals are also important as a target as well as for testing genetic-based therapies for both inherited and acquired disease. This latter field may be the most important of all, in the future development of novel therapies.


Animal genomes Gene therapy Pharming Transgenic farm animals Transgenic mice 


  1. Aguirre GD, Baldwin V, Pearce-Kelling S, Narfström K, Ray K, Acland GM (1998) Congenital stationary night blindness in the dog: common mutation in the RPE65 gene indicates founder effect. Mol Vis 30:23Google Scholar
  2. Bergman PJ, McKnight J, Novosad A, Charney S, Farrelly J, Craft D, Wulderk M, Jeffers Y, Sadelain M, Hohenhaus AE, Segal N, Gregor P, Engelhorn M, Riviere I, Houghton AN, Wolchok JD (2003) Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: A phase I trial. Clin Cancer Res 9:1284–1290PubMedGoogle Scholar
  3. Bodles-Brakhop AM, Brown PA, Pope MA, Draghia-Akli R (2008) Double-blinded, placebo-controlled plasmid GHRH trial for cancer-associated anemia in dogs. Mol Ther 16:862–870CrossRefPubMedGoogle Scholar
  4. Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci USA 82:4438–4442CrossRefPubMedGoogle Scholar
  5. Brophy B, Smolenski G, Wheeler T, Wells D, L'Huillier P, Laible G (2003) Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechnol 21:157–162CrossRefPubMedGoogle Scholar
  6. Brown PA, Bodles-Brakhop AM, Pope MA, Draghia-Akli R (2009) Gene therapy by electroporation for the treatment of chronic renal failure in companion animals. BMC Biotechnol 16:4CrossRefGoogle Scholar
  7. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66CrossRefPubMedGoogle Scholar
  8. Chowdhary BP, Raudsepp T (2008) The horse genome derby: Racing from map to whole genome sequence. Chromosome Res 16:109–127CrossRefPubMedGoogle Scholar
  9. Chowdhary BP, Paria N, Raudsepp T (2008) Potential applications of equine genomics in dissecting diseases and fertility. Anim Reprod Sci 107:208–218CrossRefPubMedGoogle Scholar
  10. Cooper BJ, Winand NJ, Stedman H, Valentine BA, Hoffman EP, Kunkel LM, Scott MO, Fischbeck KH, Kornegay JN, Avery RJ et al (1988) The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 334:154–156CrossRefPubMedGoogle Scholar
  11. Cutrera J, Torrero M, Shiomitsu K, Mauldin N, Li S (2008) Intratumoral bleomycin and IL-12 electrochemogenetherapy for treating head and neck tumors in dogs. Methods Mol Biol 423:319–325CrossRefPubMedGoogle Scholar
  12. Davidson DJ, Dorin JR, McLachlan G, Ranaldi V, Lamb D, Doherty C, Govan J, Porteous DJ (1995) Lung disease in the cystic fibrosis mouse exposed to bacterial pathogens. Nat Genet 9:351–357CrossRefPubMedGoogle Scholar
  13. Dow SW, Elmslie RE, Willson AP, Roche L, Gorman C, Potter TA (1998) In vivo tumor transfection with superantigen plus cytokine genes induces tumor regression and prolongs survival in dogs with malignant melanoma. J Clin Invest 101:2406–2414CrossRefPubMedGoogle Scholar
  14. Dow S, Elmslie R, Kurzman I, MacEwen G, Pericle F, Liggitt D (2005) Phase I study of liposome-DNA complexes encoding the interleukin-2 gene in dogs with osteosarcoma lung metastases. Hum Gene Ther 16:937–946CrossRefPubMedGoogle Scholar
  15. Edwards JL, Schrick FN, McCracken MD, van Amstel SR, Hopkins FM, Welborn MG, Davies CJ (2003) Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. Am J Reprod Immunol 50:113–123CrossRefPubMedGoogle Scholar
  16. Erickson JC, Clegg KE, Palmiter RD (1996) Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381:415–421CrossRefPubMedGoogle Scholar
  17. Farid SS (2007) Process economics of industrial monoclonal antibody manufacture. J Chromatogr B Anal Technol Biomed Life Sci 848:8–18CrossRefGoogle Scholar
  18. Finocchiaro LM, Glikin GC (2008) Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma. Gene Ther 15:267–276CrossRefPubMedGoogle Scholar
  19. Galli C, Lagutina I, Crotti G, Colleoni S, Turini P, Ponderato N, Duchi R, Lazzari G (2003) Pregnancy: A cloned horse born to its dam twin. Nature 424:635CrossRefPubMedGoogle Scholar
  20. Gardier AM, Guiard BP, Guilloux JP, Repérant C, Coudoré F, David DJ (2009) Interest of using genetically manipulated mice as models of depression to evaluate antidepressant drugs activity: a review. Fundam Clin Pharmacol 23:23–42CrossRefPubMedGoogle Scholar
  21. Garrick D, Fiering S, Martin DI, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Genet 18:56–59CrossRefPubMedGoogle Scholar
  22. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384CrossRefPubMedGoogle Scholar
  23. Grubb BR, Boucher RC (1999) Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol Rev 79:S193–214PubMedGoogle Scholar
  24. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683CrossRefPubMedGoogle Scholar
  25. Hao Y, Wax D, Zhong Z, Murphy C, Ross JW, Rieke A, Samuel M, Spate L, Dyce P, Li J, Sutovsky P, Prather RS (2009) Porcine skin-derived stem cells can serve as donor cells for nuclear transfer. Cloning Stem Cells 11:101–110CrossRefPubMedGoogle Scholar
  26. Houdebine LM (2009) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32:107–121CrossRefPubMedGoogle Scholar
  27. Humphray SJ, Scott CE, Clark R, Marron B, Bender C, Camm N, Davis J, Jenks A, Noon A, Patel M, Sehra H, Yang F, Rogatcheva MB, Milan D, Chardon P, Rohrer G, Nonneman D, de Jong P, Meyers SN, Archibald A, Beever JE, Schook LB, Rogers J (2007) A high utility integrated map of the pig genome. Genome Biol 8:R139CrossRefPubMedGoogle Scholar
  28. Hüttinger C, Hirschberger J, Jahnke A, Köstlin R, Brill T, Plank C, Küchenhoff H, Krieger S, Schillinger U (2008) Neoadjuvant gene delivery of feline granulocyte-macrophage colony-stimulating factor using magnetofection for the treatment of feline fibrosarcomas: A phase I trial. J Gene Med 10:655–667CrossRefPubMedGoogle Scholar
  29. Hyvönen P, Suojala L, Orro T, Haaranen J, Simola O, Røntved C, Pyörälä S (2006) Transgenic cows that produce recombinant human lactoferrin in milk are not protected from experimental Escherichia coli intramammary infection. Infect Immun 74:6206–6212CrossRefPubMedGoogle Scholar
  30. Ibeagha-Awemu EM, Kgwatalala P, Zhao X (2008) A critical analysis of production-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. Mamm Genome 19:591–617CrossRefPubMedGoogle Scholar
  31. Jahnke A, Hirschberger J, Fischer C, Brill T, Köstlin R, Plank C, Küchenhoff H, Krieger S, Kamenica K, Schillinger U (2007) Intra-tumoral gene delivery of feIL-2, feIFN-gamma and feGM-CSF using magnetofection as a neoadjuvant treatment option for feline fibrosarcomas: A phase-I study. J Vet Med A Physiol Pathol Clin Med 54:599–606PubMedGoogle Scholar
  32. Kamstock D, Guth A, Elmslie R, Kurzman I, Liggitt D, Coro L, Fairman J, Dow S (2006) Liposome-DNA complexes infused intravenously inhibit tumor angiogenesis and elicit antitumor activity in dogs with soft tissue sarcoma. Cancer Gene Ther 13:306–317CrossRefPubMedGoogle Scholar
  33. Karlsson EK, Lindblad-Toh K (2008) Leader of the pack: gene mapping in dogs and other model organisms. Nat Rev Genet 9:713–725CrossRefPubMedGoogle Scholar
  34. Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, Yasue H, Tsunoda Y (1998) Eight calves cloned from somatic cells of a single adult. Science 282:2095–2098CrossRefPubMedGoogle Scholar
  35. Kind A, Schnieke A (2008) Animal pharming, two decades on. Transgenic Res 17:1025–1033CrossRefPubMedGoogle Scholar
  36. Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24:435–436CrossRefPubMedGoogle Scholar
  37. Laible G (2009) Enhancing livestock through genetic engineering–recent advances and future prospects. Comp Immunol Microbiol Infect Dis 32:123–137CrossRefPubMedGoogle Scholar
  38. Lee BC, Kim MK, Jang G, Oh HJ, Yuda F, Kim HJ, Hossein MS, Kim JJ, Kang SK, Schatten G, Hwang WS (2005) Dogs cloned from adult somatic cells. Nature 436:641CrossRefPubMedGoogle Scholar
  39. Leonardsson G, Steel JH, Christian M, Pocock V, Milligan S, Bell J, So PW, Medina-Gomez G, Vidal-Puig A, White R, Parker MG (2004) Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci USA 101:8437–8442CrossRefPubMedGoogle Scholar
  40. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ 3rd, Zody MC et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819CrossRefPubMedGoogle Scholar
  41. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872CrossRefPubMedGoogle Scholar
  42. Masuda K (2005) DNA vaccination against Japanese cedar pollinosis in dogs suppresses type I hypersensitivity by controlling lesional mast cells. Vet Immunol Immunopathol 108:185–187CrossRefPubMedGoogle Scholar
  43. Mueller RS, Veir J, Fieseler KV, Dow SW (2005) Use of immunostimulatory liposome-nucleic acid complexes in allergen-specific immunotherapy of dogs with refractory atopic dermatitis – a pilot study. Vet Dermatol 16:61–68CrossRefPubMedGoogle Scholar
  44. Øvlisen K, Kristensen AT, Tranholm M (2008) In vivo models of haemophilia – status on current knowledge of clinical phenotypes and therapeutic interventions. Haemophilia 14:248–259CrossRefPubMedGoogle Scholar
  45. Parker HG, Ostrander EA (2005) Canine genomics and genetics: running with the pack. PLoS Genet 1:e58CrossRefPubMedGoogle Scholar
  46. Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, Johnson GS, DeFrance HB, Ostrander EA, Kruglyak L (2004) Genetic structure of the purebred domestic dog. Science 304:1160–1164CrossRefPubMedGoogle Scholar
  47. Parker HG, Meurs KM, Ostrander EA (2006) Finding cardiovascular disease genes in the dog. J Vet Cardiol 8:115–127CrossRefPubMedGoogle Scholar
  48. Parker HG, Vonholdt BM, Quignon P, Margulies EH, Shao S, Mosher DS, Spady TC, Elkahloun A, Cargill M, Jones PG, Maslen CL, Acland GM, Sutter NB, Kuroki K, Bustamante CD, Wayne RK, Ostrander EA (2009) An expressed Fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 325:995–998CrossRefPubMedGoogle Scholar
  49. Parry BW, Howard MA, Mansell PD, Holloway SA (1988) Haemophilia A in German shepherd dogs. Aust Vet J 65:276–279CrossRefPubMedGoogle Scholar
  50. Person R, Bodles-Brakhop AM, Pope MA, Brown PA, Khan AS, Draghia-Akli R (2008) Growth hormone-releasing hormone plasmid treatment by electroporation decreases offspring mortality over three pregnancies. Mol Ther 16:1891–1897CrossRefPubMedGoogle Scholar
  51. Petersen B, Carnwath JW, Niemann H (2009) The perspectives for porcine-to-human xenografts. Comp Immunol Microbiol Infect Dis 32:91–105CrossRefPubMedGoogle Scholar
  52. Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares DL, Colman A, Campbell KH (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86–90CrossRefPubMedGoogle Scholar
  53. Pontius JU, Mullikin JC, Smith DR, Agencourt Sequencing Team, Lindblad-Toh K, Gnerre S, Clamp M, Chang J, Stephens R, Neelam B, Volfovsky N, Schäffer AA, Agarwala R, Narfström K, Murphy WJ, Giger U, Roca AL, Antunes A, Menotti-Raymond M, Yuhki N, Pecon-Slattery J, Johnson WE, Bourque G, Tesler G, NISC Comparative Sequencing Program, O'Brien SJ (2007) Initial sequence and comparative analysis of the cat genome. Genome Res 17:1675–1689CrossRefPubMedGoogle Scholar
  54. Pursel VG, Bolt DJ, Miller KF, Pinkert CA, Hammer RE, Palmiter RD, Brinster RL (1990) Expression and performance in transgenic pigs. J Reprod Fertil Suppl 40:235–245PubMedGoogle Scholar
  55. Robertson E, Bradley A, Kuehn M, Evans M (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323:445–448CrossRefPubMedGoogle Scholar
  56. Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T, Shiozawa S, Maeda T, Ito M, Ito R, Kito C, Yagihashi C, Kawai K, Miyoshi H, Tanioka Y, Tamaoki N, Habu S, Okano H, Nomura T (2009) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527CrossRefPubMedGoogle Scholar
  57. Shin T, Kraemer D, Pryor J, Liu L, Rugila J, Howe L, Buck S, Murphy K, Lyons L, Westhusin M (2002) A cat cloned by nuclear transplantation. Nature 415:859CrossRefPubMedGoogle Scholar
  58. Speakman J, Hambly C, Mitchell S, Król E (2008) The contribution of animal models to the study of obesity. Lab Anim 42:413–432CrossRefPubMedGoogle Scholar
  59. Spellacy E, Shull RM, Constantopoulos G, Neufeld EF (1983) A canine model of human alpha-L-iduronidase deficiency. Proc Natl Acad Sci USA 80:6091–6095CrossRefPubMedGoogle Scholar
  60. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander EA (2007) A single IGF1 allele is a major determinant of small size in dogs. Science 316:112–115CrossRefPubMedGoogle Scholar
  61. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  62. Talbot D, Collis P, Antoniou M, Vidal M, Grosveld F, Greaves DR (1989) A dominant control region from the human beta-globin locus conferring integration site-independent gene expression. Nature 338:352–355CrossRefPubMedGoogle Scholar
  63. Tsai KL, Clark LA, Murphy KE (2007) Understanding hereditary diseases using the dog and human as companion model systems. Mamm Genome 18:444–451CrossRefPubMedGoogle Scholar
  64. Vail DM, MacEwen EG (2000) Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest 18:781–792CrossRefPubMedGoogle Scholar
  65. Valentine BA, Cooper BJ, de Lahunta A, O'Quinn R, Blue JT (1988) Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: Clinical studies. J Neurol Sci 88:69–81CrossRefPubMedGoogle Scholar
  66. Vignon X, Chesné P, Le Bourhis D, Fléchon JE, Heyman Y, Renard JP (1998) Developmental potential of bovine embryos reconstructed from enucleated matured oocytes fused with cultured somatic cells. C R Acad Sci III 321:735–745PubMedGoogle Scholar
  67. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374CrossRefPubMedGoogle Scholar
  68. Wall RJ, Pursel VG, Shamay A, McKnight RA, Pittius CW, Hennighausen L (1991) High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine. Proc Natl Acad Sci USA 88:1696–1700CrossRefPubMedGoogle Scholar
  69. Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451CrossRefPubMedGoogle Scholar
  70. Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11:1363–1369CrossRefPubMedGoogle Scholar
  71. Whitelaw CB, Archibald AL, Harris S, McClenaghan M, Simons JP, Clark AJ (1991) Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice. Transgenic Res 1:3–13CrossRefPubMedGoogle Scholar
  72. Whitelaw CB, Lillico SG, King T (2008) Production of transgenic farm animals by viral vector-mediated gene transfer. Reprod Domest Anim 43(Suppl 2):355–358CrossRefPubMedGoogle Scholar
  73. Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P, Wilmut I, Garner I, Colman A (1991) High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology (NY) 9:830–834CrossRefGoogle Scholar
  74. Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L (2009) Generation of pig-induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1:46–54CrossRefPubMedGoogle Scholar
  75. Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstegard TS, Marçais G, Roberts M, Subramanian P, Yorke JA, Salzberg SL (2009) A whole-genome assembly of the domestic cow. Bos taurus. Genome Biol 10:R42CrossRefGoogle Scholar
  76. Zou X, Chen Y, Wang Y, Luo J, Zhang Q, Zhang X, Yang Y, Ju H, Shen Y, Lao W, Xu S, Du M (2001) Production of cloned goats from enucleated oocytes injected with cumulus cell nuclei or fused with cumulus cells. Cloning 3:31–37CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Veterinary Basic SciencesRoyal Veterinary CollegeLondonUK

Personalised recommendations